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摘      要  ：  �近年来，影像组学作为连接高通量影像特征与机器学习算法的关键桥梁，为神经肿瘤分级提供了全新的技术路径，尤

其在融合多模态MRI序列信息方面展现出广阔的应用前景。多模态影像在表达肿瘤结构、形态、组织异质性等方面具

有互补优势，为后续建模与智能分类提供了坚实基础。本研究围绕多模态MRI数据源的组织表达能力与信息稳定性展

开，进一步构建融合策略导向的影像组学建模流程，最终结合性能验证与临床反馈机制，系统探讨该路径在脑胶质瘤

分级诊断中的价值。
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Abstract  :  � In recent years, radiomics has emerged as a pivotal bridge connecting high-throughput imaging 

features with machine learning algorithms, offering novel technical pathways for neuro-oncology 

grading. It demonstrates particularly broad application prospects in integrating multi-modal MRI 

sequence information. Multi-modal imaging exhibits complementary advantages in expressing 

tumor structure, morphology, and tissue heterogeneity, providing a robust foundation for subsequent 

modeling and intelligent classification. This study focuses on the tissue expression capabilities and 

information stability of multimodal MRI data sources. It further constructs an imagingomics modeling 

workflow guided by fusion strategies. Ultimately, by integrating performance validation and clinical 

feedback mechanisms, it systematically explores the value of this pathway in the graded diagnosis of 

brain gliomas.
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引言

近年来，随着机器学习、计算机视觉等技术在医学影像中的深入渗透，影像组学作为一种数据驱动的建模方法，逐步成为肿瘤定量

分析的重要手段。尤其在多模态 MRI数据融合、区域特征提取与模型分类判别等环节中，其优势正被不断验证。然而，现有研究多聚焦

于特征层面优化，缺乏从临床应用反馈、系统部署流程到患者获益的纵深验证。在此基础上，探索一条从影像信号源、建模机制直达临

床价值转化的闭环路径，已成为推动影像组学技术走向实用化的关键命题。
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一、多模态MRI在脑胶质瘤影像表达中的信息整合

机制

（一）序列影像的组织识别能力

不同 MRI序列所承载的组织反映信息具有显著差异性，这种

差异并非成像误差，而是体现出序列在对肿瘤不同物理属性的感

知机制。T1加权成像（T1WI）主要反映脂质组织的高信号表现，

在观察肿瘤边界清晰度及出血区域识别方面具有优势；T2加权成

像（T2WI）对水分含量变化极为敏感，有助于揭示胶质瘤内部的

液化坏死区域；而 FLAIR序列通过抑制脑脊液信号，增强了对病
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灶周围水肿与弥散浸润的呈现能力，为病灶外延结构描绘提供了

更为清晰的影像支持 [1]。

（二）关键模态的稳定特征输出

尽管多模态序列各具功能优势，但在实际影像数据采集与临

床应用中，不同序列之间存在信噪比波动、成像参数不一致、运

动伪影干扰等问题，严重影响建模数据的可用性与一致性。尤其

是在跨医院、跨设备或多时间点扫描条件下，序列间数据稳定性

的保持成为可重复建模的技术瓶颈。因此，亟需对关键模态进行

筛选，明确其在多分级、多病例场景中的图像输出稳定性。研究

表明，T1增强序列因对造影剂反应明显，在肿瘤边界表达上具有

较高的信噪优势，常被视为高等级胶质瘤建模中不可或缺的核心

模态；而 FLAIR因其对周边渗透区域反映较稳定，亦在低等级病

例中展现出良好适应性。

二、影像组学在脑胶质瘤分级任务中的建模流程设置

（一）病灶分割的输入前提

在多模态 MRI影像组学的建模体系中，病灶区域的精确分割

是整个特征提取与模型训练环节的原点。任何高维影像特征的有

效表达都依赖于分割区域是否能够准确覆盖肿瘤组织边界及其微

观异质性结构。若分割误差过大，后续影像组学特征（包括灰度

直方统计、纹理矩阵、形态参量等）将被噪声污染，导致模型在

分级任务中出现偏移或失真。因此，病灶分割的质量直接决定影

像组学特征的真实性与判别力，它不是数据处理的预备环节，而

是模型构建的逻辑起点 [2]。

在实际操作中，脑胶质瘤的病灶边界往往并不具备明显的形

态分界。肿瘤实质区、坏死区及水肿区在不同序列上的信号差异

显著，使得单模态分割极易丢失关键结构信息。为此，多模态输

入下的联合分割算法逐渐成为主流方案。该方法基于多序列图像

的强度联合分布，通过特征空间的联合约束实现跨模态分割。其

数学表达可简化为：

( ) ( ) ( )( ) ( )2
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=Ω
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其中，E(S) 为分割能量函数， ( )iI x 表示第 i 个模态的像素强度，

iµ 为该模态下的均值模型， iw  为模态权重系数，R(S) 为形状平滑约

束项。通过多模态权重的迭代更新，可在保证结构连续性的同时增强

边界识别精度，使分割结果在不同模态间保持解剖一致性。

为量化分割精度，临床研究通常采用 Dice系数（DSC）与

Hausdorff距离（HD）作为核心评价指标。表1展示了典型算法

在多模态条件下的性能差异。

表1 不同分割算法在多模态 MRI数据下的性能比较

分割方法 数据类型 DSC均值 HD (mm) 备注

手工描绘 T1+T2 0.83 5.2
操作时间长，主观

性强

半自动阈值

分割
T1+FLAIR 0.86 4.8 对灰度敏感

基于

U-Net的

自动分割

多模态输入 0.91 3.4 稳定性优越

Attention-

U-Net增

强模型

多模态输入 0.94 2.7

从表中可以看出，基于深度卷积网络的自动分割在精度与稳

定性上均优于传统方法，尤其是 Attention机制的引入，使模型在

复杂组织边界识别时具备更高敏感度。值得注意的是，即便在深

度学习框架下，输入数据的空间校准与模态对齐仍是不可或缺的

前置条件，否则分割网络的梯度传播会因特征漂移而失效。

（二）特征筛选的建模基准

由于影像组学特征在单例样本上可达到上千个维度，尤其是

在纹理、形态、强度等高通量特征协同提取的条件下，极易出

现特征间高度共线、多重冗余以及训练样本维度比失衡等典型

的“维度灾难”（Curse of Dimensionality）问题。为此，科学

严谨的特征筛选策略成为模型建构流程中的关键中介，它不仅在

技术层面承载着对高维原始特征空间的结构压缩，更在建模逻辑

上完成了从“数据表达”到“信息提炼”的本质过渡 [3]。根据筛

选方式的不同，现有方法可大致分为过滤式（Filter）、包裹式

（Wrapper）和嵌入式（Embedded）三类。

1. 筛选方法的算法分类与逻辑依据

过滤式方法强调对单一特征与目标变量之间的相关性进行评

估。典型方法如最小冗余最大相关（mRMR）以互信息为度量，

寻找在保留信息量最大的同时排除冗余特征的最优子集，其目标

函数表达为：

( ) ( )max ,
S F

D S c R S
⊂

−  

其中 D(S, c) 表示特征子集与分类标签的相关度，R(S) 表示子

集内部的平均冗余性。该方法在 MRI影像纹理特征处理场景下表

现出良好的降维能力。

包裹式方法则通过特征子集在分类器上的预测性能直接评估

其重要性，典型方法如递归特征消除（RFE），虽然计算成本较

高，但在样本量适中时可实现性能最大化。

嵌入式方法代表当前主流，尤其以 LASSO（Least Absolute 

Shrinkage and Selection Operator）为代表，其核心机制是引入

L1范数作为正则项以压缩不重要的特征系数，目标函数如下：

2
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1min
2
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其中 \lambda 控制正则强度。LASSO不仅完成了特征选择，

也对过拟合风险进行了有效抑制，适用于多模态特征存在结构噪

声的建模场景。

2. 不同方法对分级精度的影响分析

为验证不同特征筛选方法对分级性能的贡献程度，本文以100

例 WHO II–IV级脑胶质瘤多模态 MRI数据为基础，选取 T1、

FLAIR、T1CE三个关键模态，提取原始特征共1024维，分别应

用三种筛选策略后输入相同分类模型（SVM），其交叉验证 AUC

如表2所示：
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表2 不同特征筛选方法对分级模型性能的比较

筛选方法 特征维度 AUC F1-score

无筛选（全特征） 1024 0.812 0.738

mRMR筛选 60 0.859 0.774

LASSO筛选 48 0.891 0.806

从结果可以看出，未筛选特征虽包含更多信息，但显著拖累

模型性能。而 LASSO在保持信息完整性的同时实现了特征空间压

缩，显著提升模型性能与稳定性，验证了其作为嵌入式特征选择

的有效性。

（三）融合策略的分类性能表现

在多模态 MRI影像组学构建脑胶质瘤分级模型的过程中，如

何实现来源于不同序列的数据特征在建模阶段的有效融合，成为

决定模型最终分类能力的关键技术节点。目前常用的融合策略主

要可分为三类：特征级融合（early fusion）、决策级融合（late 

fusion）、深度融合（deep fusion），三者在模型结构、信息处理

时机与计算复杂性上各具特征，其适用性亦因任务场景而异。为

厘清不同策略在脑胶质瘤分级任务中的表现差异，需对其技术逻

辑与分类性能进行系统性比对分析。

1. 特征级融合：原始特征空间的拼接整合

特征级融合是目前影像组学中最为直接的融合方式，其核心

思路是在完成各模态特征提取与标准化后，将所有模态的特征在

维度层进行拼接，构成统一的高维输入向量。该方法能够完整保

留各模态的原始数值特征，实现序列间的早期信息整合 [4]。但由

于拼接后的特征维度往往极高，若不伴随有效的筛选机制，易导

致冗余传播与维度诅咒，从而拖累模型训练效率。

公式上，设模态 A、B、C分别提取得到特征向量 A B Cf f f、、 ，

则特征级融合结果为：

[ ], ,A B Cearly =F f f f

尽管此类方法操作简便、实现成本低，但其对特征间的潜在

关联性无法进行显式建模，也难以适应序列信息结构差异较大的

高异质场景，因而常用于特征同质性较高的数据集。

2. 决策级融合：分类结果的多模型集成

相较于特征级融合，决策级融合采取“各模态单独建模—再

进行决策合成”的策略，其核心优势在于保留了各模态分类模型

的独立性，并通过后期加权平均、投票机制或置信评分集成等方

式提升整体鲁棒性。决策融合结果可表达为：

( )
1

ŷ
M

i i i
i

w h
=

= ⋅∑ f

其中 ( )ih ⋅ 表示第 i 个模态的分类器， iw  为对应权重系数。该

方法适用于模态信息差异较大或互补性强的任务场景，尤其在高

等级胶质瘤中，可通过增强模态的局部分类能力实现整体精度

提升。

3. 深度融合：统一网络结构下的特征动态整合

为克服前述两种融合策略在静态特征处理与弱协同方面的局

限性，近年来以卷积神经网络（CNN）为基础的深度融合方法逐

渐成为多模态医学影像分析的核心方向。其关键在于将不同模态

的输入图像或特征图通过并行子网络编码后，在网络中间层或后

端构建特征整合模块，如多尺度注意力机制（MSA）、特征加权

层或 Transformer结构等，以实现模态间的语义对齐与动态信

息增强。该策略实现了从低层结构特征到高层语义表达的逐级融

合，兼具表达力与适应性。

以多输入 ResNet为例，其融合模块可用如下表达表示：

( )( )1M
i i ifused iφ α ψ= = ⋅∑F f

其中 ( )iψ ⋅  表示模态 i 的编码器， iα 为注意力权重， ( )φ ⋅  为

融合后统一的分类网络。

深度融合方法的主要优势在于可学习模态间的非线性关联结

构，从而显著提高模型的判别能力与泛化水平。但其对硬件环境

与训练样本量要求较高，且模型结构复杂，解释性相对较弱，需

结合可视化技术辅助后期临床验证。

4. 不同融合策略在分级性能中的对比表现

为验证三种融合策略在脑胶质瘤分级中的性能差异，本文在

同一数据集上（含 T1、T2、FLAIR、T1CE）分别构建三类融合

模型，并在五折交叉验证下对比 AUC、灵敏度与特异度。结果如

表3所示：

表3 不同融合策略在多模态 MRI脑胶质瘤分级模型中的性能对比

融合策略 AUC 灵敏度 特异度 平均训练时长（min）

特征级融合 0.862 0.801 0.787 12.4

决策级融合 0.873 0.814 0.791 18.7

深度融合

（MSA-CNN）
0.903 0.844 0.829 35.2

实验结果表明，深度融合策略在 AUC与特异度两个指标上均

明显优于其他方法，尤其在分辨高低级别胶质瘤的细微差异方面

表现出更强鲁棒性。这表明其动态建模能力对于异质影像特征间

的信息协同具有更优结构适应性。

三、诊断系统构建对临床分级价值的验证思路设定

（一）准确指标的性能验证

本研究在前期建模完成基础上，选取110例经病理确诊的脑

胶质瘤病例，采用五折交叉验证方式评估模型的准确性，并与三

位高级放射科医师的独立诊断结果进行指标对比，核心结果如表4

所示：

表4 影像组学分级模型与传统诊断方法性能对比

诊断方式 AUC
灵敏度

（%）
特异度（%）

总体一致率

（%）

医师人工阅片

（平均）
0.782 71.3 75.9 73.2

单序列 SVM模

型（T1CE）
0.812 73.8 78.1 75.6

多模态融合模

型（本研究）
0.903 86.7 84.5 85.6

由表可见，多模态 MRI融合模型在 AUC、灵敏度、特异度三

项关键指标上均优于传统人工判读与单模态分类模型，特别是在

高等级肿瘤识别方面，其识别敏感性显著提高。这种性能提升不



Copyright © This Work is Licensed under A Commons Attribution-Non Commercial 4.0 International License. | 083

仅可降低漏诊率，同时增强对术前治疗分级策略的可靠性支撑，

具备临床替代与补充价值。

（二）稳定预测的分级适应性

诊断系统在真实临床环境中常面对异构样本输入与复杂疾病谱

分布，其能否维持稳定分类表现，是衡量其可拓展性与可信度的核

心标准。为了验证模型在不同分级等级中的表现一致性，本研究按

照 WHO分级标准将样本划分为 II、III、IV三类，分别计算各等级

下的分类准确率、方差范围与 Kappa一致性系数，结果见图1。

图1 模型在不同分级等级下的预测准确率与置信区间图

分析结果显示：模型在低等级（II级） 肿瘤中准确率为

82.3%，在中等级（III级）为85.6%，在高级别（IV级）则达到了

91.2%，各等级间波动幅度小于9%，标准差维持在 ±4.2%以内，

Kappa系数均超过0.78，表明模型具备较高的等级适应能力。

（三）部署流程的诊疗增益

在实际临床流程中，任何新兴辅助诊断技术若无法与既有影

像工作流实现高效兼容，其应用潜力将大打折扣。因此，模型

的“诊疗增益”不仅体现在数值指标的提升，更应落实于对放射

流程效率的改善、术前计划制定的辅助能力以及多学科决策路径

（MDT）中的支持作用。

本研究将影像组学系统以插件形式嵌入神经放射影像分析平

台（RadiAnt + Python API），构建标准三步流程：数据导入 → 

自动分割 → 模型分级预测，整个过程平均耗时不超过5分钟，远

低于人工阅片约18分钟的平均时间（p < 0.01），且具备全流程

记录追溯功能，方便医师二次审核。

四、结语

基于多模态 MRI的影像组学分级模型，在保持无创获取信息

优势的同时，显著提升了脑胶质瘤分级诊断的准确性、稳定性与

适应范围。在不同 WHO分级等级下，该模型展现出稳健的分类表

现，并具备较强的流程嵌入能力与操作可行性。其在术前风险评

估、诊疗路径优化与资源调配等临床场景中的应用前景已具备可

转化基础，为神经肿瘤领域迈向智能化诊断提供了清晰路径。
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