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摘　　　要　：　随着实际数据分析中动态流式数据集的比例不断上升，流数据的应用场景正在不断拓宽。在海量数据下，尖峰厚尾数

据分布占据重要比例，如何进行对应的稳健估计是非常有必要的。本研究提出基于Huber损失函数的稳健期望分位

数回归方法，仅使用历史汇总统计量实现在重尾噪声下给出实时高效的稳健估计，并且在特定假设条件下建立估计量

的渐近性质。模拟研究进一步验证，该方法在流式计算环境中处理大规模数据集时，具有稳健性和实时性。
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Abstract : 	 With the continuous increase in the proportion of dynamic streaming datasets in practical data anal-

ysis, the application scenarios of streaming data are expanding. Under massive data environments, 

peaked and heavy-tailed data distributions occupy a significant proportion, making it necessary to 

develop corresponding robust estimation methods. This study proposes a robust expectile regres-

sion method based on the Huber loss function, which achieves real-time and efficient robust estima-

tion under heavy-tailed noise through incremental parameter updates using only historical summary 

statistics, and establishes the asymptotic properties of the estimator under specific assumptions. 

Numerical experiments further verify that the proposed method exhibits robustness and real-time 

performance when processing large-scale datasets in streaming computation environments.
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引言

随着数字基础设施的不断完善以及数据与各行业的深度融合，全球数据生成速率正以高速复合增长率突破物理存储边界，其中超

过70%的新增数据以流式形态动态抵达。这种数据洪流在金融高频交易、工业物联网监测等场景中呈现出显著的重尾分布特征 —— 据

纽约证券交易所实测数据显示，约5%的极端值承载着超过80%的风险信息。同时，移动支付的吞吐量达到2Tbps，实时处理流数据成

为关键问题。流数据（Streaming data）处理主要以在线更新算法为主。流数据作为动态时序数据序列，其本质为数据观测点按序到达

且具有单次遍历性。此类数据可形式化表示为 1{ }t tD ∞
= ，其中 tD 表示第 t 个时刻到达的数据切片。在线更新算法的核心机制在于增量计

算框架的构建——通过设计递推公式实现统计量的动态更新，例如均值估计量 1
1 1

t t tD t D
t

D
t−

−
= + ,该公式仅需存储前序统计量而非完

整历史数据 [1]，有效满足流处理的有限存储约束。处理流数据的最严格的约束条件是，一旦处理了流数据中的元素，就必须将其丢弃或

只有少量特定的数据元素才会被存储。同时流数据分析有时效性要求。针对流数据处理的上述特性，学界已发展出多类流式估计方法：

Schifano等 [2] 基于线性模型提出滑动窗口参数更新策略，Wang等 [3] 则拓展至分位数回归框架，但二者均存在流的数量上限有所局限。

Luo和 Song[1] 构建的广义线性模型迭代估计器，突破传统方法的流数量约束，其渐近相合性证明为实际工程应用提供了理论保障。因

此，流数据的特性就是规模宏大、实时连续到达、极值不可预测，尤其是仅可处理一次的特性，在不访问历史数据的情况下，利用在线

可更新框架进行统计推断。
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在稳健回归方面，Huber回归方法具有对异常值非常稳健的特性 [4]。这种方法最初由 Huber在1964年提出，旨在解决传统最小二

乘法对异常值敏感的问题。为了减少噪声的影响，Gupta 等 [5] 通过使用非对称 Huber 损失函数分析了稳健的正则化极限学习机框架。针

对高维非光滑优化问题，Yi等 [6] 提出一种融合半光滑牛顿法与坐标下降策略的混合算法，适用于特定情况下的 Huber回归及分位数回归

场景。在稳健回归方法研究中，为抵抗异常值或包含具有重尾分布的变量，Sun等 [7] 研究了自适应 Huber回归，揭示稳健性调节参数与

样本规模、数据维度及高阶矩的关联，推导出具有维度自适应特性的误差上下界，实现高维数据的稳健估计与推理。俞搏 [8] 在 Huber损

失函数的基础上，通过引入可调节的尾部衰减机制，实现对 Huber函数抗离群值能力的定向优化。Akkaya等 [9] 研究 Huber 损失函数极

小化问题，研究控制全局最小值集稀疏性的正则化参数的选择巧妙应对高维数据噪声。潘莹丽等 [10] 结合分布式优化的思想，采用 Huber

回归方法去消除异常值和厚尾变量的影响。具有无限方差的重尾噪声在实践中普遍存在。与分位数回归相比，期望回归涉及到最小化二

次损失，并且可以对重尾响应敏感。为了解决这一限制，Man 等 [11] 提出了一种稳健回归方法，通过重构非对称最小二乘框架的权重分

配机制，保留期望回归计算效率优势，引入基于残差分布自适应的调节参数，使模型对极端值的敏感度降低。其理论分析表明，该方法

在响应变量仅需有限二阶矩存在的弱假设下，仍能保持估计量的 Oracle性质。该方法继承了期望回归的计算便捷性和统计效率，并且在

重尾响应分布下几乎与分位数回归一样稳健。针对流数据处理，研究提出一种基于 Huber损失的在线可更新期望分位数估计方法，实现

对分布尾部的非对称的探索。基于在线可更新机制，仅需历史数据的的历史统计量即可实现参数动态更新，满足流处理系统的实时性处

理需求。

一、基于Huber损失的稳健期望分位数回归

首 先 定 义 y∈ 是 响 应 变 量， ( )1,...,
T p

px x x= ∈

是 一 个 p 维 协 变 量， { }1 2, ,..., bD D D 为 流 数 据 集， 其 中

( ){ }, , 1,..., , 1,..., ,t ti ti t t tD y x i n t b n D= = = = ， 其 中

1
; 1,..,b

b tt
N n t b

=
= =∑ 。观测值 ( ){ }, , 1,...,i iy x i n= 独立同分布

于总样本 (y,x)。对于给定的参数 ( )0,1τ ∈ ,假定观测值来自以下线

性回归模型：

0 .Ty x β ε= +                                          （1-1）

其中，T 表示转置， ε 是随机误差， ( )0 1,...,
T

pβ β β= 是 p 维

回归变量，随τ 的不同值而变化，从而提供了对给定 x 的 y 的整

个条件分布的信息。

期望分位数回归的定义非对称平方损失函数 ( )L uτ 如下：

( ) ( ) ( )

2
2

2

, 0
0 ,

1 0
u u

L u I u u
u uτ

τ
τ

τ
 >= − ≤ =  − ≤

	 （1-2）

其中τ 为取值介于0到 1 之间的非对称参数，依靠τ 控制损失

函数的非对称程度。与分位数回归相比，期望回归涉及到最小化

二次损失，因此对重尾响应敏感。为了解决这一限制，Man等人

提出了一种稳健期望分位数回归方法，该方法继承了期望分位数

回归的计算便捷性和统计效率，并且在重尾响应分布下几乎与分

位数回归一样稳健。

理论上，对于模型（1-1）中的真参数 0β ，采用稳健期望分

位数回归方法求解真参数，对于观测值 ( ){ }, , 1,...,i iy x i n= ，即求解

如下方程最小化的根：

( ),
1

ˆ arg min
n

T
i i

i
L y xτ γβ

β β
=

= −∑ 		  （1-3）

其 中 ( ) ( ) ( ), 0L u I u uτ γ γτ= − < ⋅ 是 损 失 函 数， ( )I v 为 示 性

函 数， 而 ( )γ  服 从 下 文 第2小 节 中 的 条 件 C1。Huber损 失

( ) ( ) ( ) ( )2 2 1 1/ 2 1u u I u u I u= ⋅ ≤ + − ⋅ > 也符合条件C1。

二、在线可更新方程

（一）全数据集 Oracle估计

首先给出 Oracle估计量的表达式。根据式（1-3），Oracle

回归估计量 ˆ
bNβ 的表达式，模型中针对求解真参数向量 0β 的估计，

即求解如下方程最小化的根：

( ),
1 1

1ˆ arg min
t

b

nb
T

N ti ti
t ib

L y x
N τ γβ

β β
= =

= −∑∑ 		  （2-1）

其中 ( ) ( ) ( ), 0L u I u uτ γ γτ= − < ⋅ 是损失函数， ( )I v 表示示性函

数，而 ( )γ  服从C1。根据 Man等 [11]，给出以下假设条件。

C1：损失函数 ( ) ( )2 /u uγ γ γ=  和 ( )  满足： ( ) ( )0 0i ∇ = ，对

于任意的 u∈  有 ( )u∇ ≤ ( )1min ,a u ； ( ) ( )2 0 1ii ∇ = ，对于任意

的 3u a≤ 有 ( )2
2u a∇ ≥ ； ( )iii 对于任意u∈，有 ( ) 2u u u∇ − ≤ ，其中

1 2 3, ,a a a 都是正的常数。

C2 ： ( )T
t ti tiE x x∑ = 是 一 个 正 定 矩 阵， 有

( ) ( )max min 0u t t lλ λ λ λ≥ ∑ ≥ ∑ ≥ ≥ 并 存 在 1c ≥ ， 对 所 有 的 δ ∈ 和

0t ≥ ，有 

21
2 2

2
2

t
T

tP x c t eδ δ
− − 

∑ ≥ ≥  
 

。

C3：回归误差是独立的， ( )2 2E x εε σ≤ < ∞，其中
2

1
max jjj dεσ σ
≤ ≤

= ，并

且 ( )( ) 0E w xτ ε ε⋅ = ，其中 ( ) ( )0w u I uτ τ= − < 。

假设条件C1、C2 、C3成立可得：

( ) ( ){ }( )d 1 2 1
0

ˆ 0, T
nN N J E xx Jβ β ξ ε− −− → 	 （2-2）

其中 ( ){ }TJ E w xxτ ε= 。

(二 ) 在线可更新稳健期望分位数回归估计

在给出了流数据集的 Oracle估计的情况下，在流式数据集

{ }1 2, ,..., bD D D 。根据（1-3）设定 ( )ˆ arg min
tt NQβ β= ，其中

( ) ( ),
1

1 t

t

n
T

N ti ti
it

Q L y x
n τ γβ β

=

= −∑ 			   （2-3）

其中，子集大小 n t 远小于全集大小 bN 。因此，计算速度更加
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快捷，内存占用更少。在 1C 、 2C 、 3C 下，局部估计 ˆ , 1,...,t t bβ = 也服

从渐近正态分布   

( ) ( ){ }( )d 1 2 1
0 0, , .T

t t t t t t tn N J E x x J nβ β ξ ε− −− → →∞


（2-4）

其中 ( ){ }T
t t tJ E w x xτ ε= 。由 (2-4)式{ }1̂̂ ,..., bβ β 服从复合正态

分布 ( ){ } ( ){ }1 2 1 1 2 1
0 1 1 1 1 0

1

1 1, ,..., , .T T
i i b bi bi b

b

N J E x x J N J E x x J
n n

β ξ ε β ξ ε− − − −    
   
     

则极大似然函数如下 ( ) ( ){ }
1
2

1 2 1

1

1 1 exp
2

Pb
T

t ti ti t
t t

L J E x x J
n

β ξ ε
π

−

− −

=

  =   
   

∏

( ){ } ( ) ( ){ }{ }( )11 2 1 2ˆ̂
2

T
T Tt

t ti ti t t ti ti t t
n J E x x J J E x x Jξ ε β β ξ ε β β

−− − − − − 
 

 

由上式取对数可得

( )( ) ( ) ( ){ }{ }( )12

1

1 ˆ̂log
2

b T T
t t t ti ti t t

t
L C n J E x x Jβ β β ξ ε β β

−

=

= − − −∑  其

中C 为常数。

令上式最大化，可得到所需估计量，等价最小化下式损失 

( ) ( ) { }( )1

1

ˆˆ̂ ˆ̂
b T

t t t t t t
t

Q n J Jβ β β β β−

=

= − ∑ −∑ 	 （2-5）

令

1
1 1

1
1 1

ˆ̂ˆ̂ ˆ̂̂̂ b 2,3,...
b

b b
OHER
N t t t t t t t

t t
J J J Jβ β

−
− −

−
= =

   = ∑ ∑ =   
   
∑ ∑ ， 	 （2-6）

根据上式，只需要在每一个 bD 中针对求解
1

t t tJ J−∑ 和 t̂β 。其中，

( )1

1ˆ tn T
t ti ti tii

t

J w x x
n τ ε

=
= ∑ 、 ( )2

1

1ˆ ˆtn T
t ti ti tii

t

x x
n

ξ ε
=

∑ = ∑ ， ( ) ( ) ( )ˆ wτ γξ ε ε ε= ∇ ，

( ) ( )2u uγ γ γ=  ， ( ) ( )0w u I uτ τ= − < 。 取 Huber 损 失 函 数，

( ) ( ) ( ) ( )2 2 1 1/ 2 1u u I u u I u= ⋅ ≤ + − ⋅ > 。则 ( ) ( ) ( ), 0L u I u uτ γ γτ= − < ⋅  ，则

( ) ( ) ( ) ( ) ( ) ( )
2 2

, 0 0 .
2 2
uL u I u L u I u I u u I uτ γ γ

γτ τ γ γ γ
   = − < = − < ≤ + − >  
   

具体算法流程可见表1。

表1 在线更新算法

算法：在线更新算法

1   输入：子集 ( ){ }, , 1,..., , 1,..., , , , , .t ti ti tD y x i n t b N b τ γ= = =

2 初始： 初始值 U 0 , 0t P P tV×= =

3 for 1,2, ,t b=   do

4 读取数据集 
tD   取数据，并由（2-6）式计算 t̂β ，和

5 1ˆˆ̂U Ut t t t tJ J−= + ∑ ， 1ˆ ˆˆ̂
t t t t t tV V J J β−= + ∑

6 end

7 输出： 1ˆ
b

OHER
N b bU Vβ −=

三、大样本性质

为了证明可更新在线稳健回归估计的理论性质，在 1C 、 2C 、

3C 的基础上，根据 Wang等人 [12] 增加一些条件：

4C
：设 bNn

b
= 为每个子集的平均大小。要求

b

n
N

→∞，并且

所有的子集大小 tn 都以 ( )nΟ 阶发散， 即存在正的常数 1c 、 2c ，

有 1 2min maxt t

t t

n nc c
n n

≤ ≤ ≤ 。

5C ：存在正定矩阵 1 2 b∑ ∑ ∑，，， 满足 1 1

1

1 tn
PT

ti ti t t t
it

x x J J
n

− −

=

→ ∑∑ 。

定理 1在 1 5C C− 的条件下，在线可更新稳健期望分位数估计

量的渐近分布如下：

( ) ( ) ( )
1

d2
0 0,

b

OHER
b N pf N N Iβ β

−
Φ − →  



且 ( ) ( ){ }1 2 1T
t ti ti tf J E x x Jξ ε− −Φ = 。

证明：对于局部稳健的估计量 t̂β ，其服从渐近条件如下：

( )1
0

1

1 1tn

t t i ti p
it t

J x O
n n

β β ξ ε−

=

 
− = +  

 
∑



  

根据方程（2-6），我们可以得到 ˆ
b

uhr
Nβ 和 t̂β 的关系是如下所示：

11 1 1
1 1

1 1 1 1

ˆ̂ˆ̂̂̂ˆ̂ˆ̂̂ ˆ̂̂̂
b

b b b b
OHER t t t t t t
N t t t t t t t t t t

t t t tt t

J J J JJ J J J w w
n n

β β β
−− − −

− −

= = = =

   ∑ ∑   = ∑ ∑ =                  
∑ ∑ ∑ ∑ ， 其 中 t

t
b

nw
N

= ，

则直接计算可得：

( ) ( )
1

1 1

0 0
1 1

ˆ̂ˆ̂̂̂ˆ̂
b

b b
OHER t t t t t t

b N t b t t
t tt t

J J J JN w N w
n n

β β β β
−

− −

= =

   ∑ ∑
− = −      

   
∑ ∑

且 ( )
1

1
0

1

ˆˆ̂ ˆ
b

t t t
b t t t t t p

t t b

J J bN w J J O
n N

β β
−

−

=

    ∑
− ∑ − =            

∑ 和 由 正 则 性 条 件

1 5C C− ，可以获得

( )

( ) ( )

1

0
1

1

0 0
1 1

ˆˆ̂ ˆ

ˆˆ̂ˆ̂

b
t t t

b t t
t t

b b
t t t

b t t t b t t t
t t t

J JN w
n

J JN w N w
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β β

β β β β

−

=

−

= =

 ∑
−  

 
  ∑ = ∑ − + −∑ −          

∑

∑ ∑

( ) ( )

( ) ( )

1 1

1 1

1 1

1 1ˆˆ̂

1 1

t

t

nb

b t t t t t i ti p p
t i t b

nb

ti i p
t ib bt

bN w J J x O O
nE w N

bx O
E wN N

τ

τ

ξ ε
ε

ξ ε
ε

− −

= =

= =
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如果每次数据流中的协变量是齐次的， 即 1 2 b∑ = ∑ ∑ = ∑= = ，

( ) ( ){ }1 2 T
t ti tif J E x xξ ε−Φ = ，这与方程 (2-1)中 Oracle估计量的渐近方差

一致。可更新估计量 ˆ
b

OHER
Nβ 与 Oracle估计量 ˆ

bNβ 渐近等价。

四、数值实验

在本节中，使用蒙特卡罗模拟研究来评估所提出方法的有效

性能。所有程序都是用 R代码编写的。实验围绕流数据处理展

开，针对每一批到达数据，通过在线可更新稳健期望分位数回归

估计与全数据集估计进行比较。从以下线性模型生成数据：

( ){ }0 , 1, , ,i i i b
TY X e i Nβ ε τ= + − = …

其 中 ( ) ( ),
1

t

n

e i
i

e min L Y eτ γτ
=

= −∑  是 为 了 消 除 估 计 器 对 τ 的 影

响，使得在不同的τ 值下真值为 0β 。参数的真值为 ( )0 1,1,0, 2β =

1 2 3 4[1, , , ] ,, T
i i i i iX X X X X=  1 2 3 4,, ,i i i iX X X X 服从多重正态分布 [ ]0,N Σ  ，

其中协方差矩阵 Σ 是由 0.5i j
ij

−Σ =  , 1 , 4i j≤ ≤ 构成的。根据 Man等

人 [11] 的参数研究， 取总样本参数 ( )( )/ p+logb bN Nγ =  和子集样本

参数 ( )( )/ p+logt tt n nγ = 。固定样本子集大小 500tn = ， 并改变机器

数量 K ，然后得到总样本大小 500n K= .误差 iε 独立于以下三个分

布之一产生：（i） ( )0,1i Nε ∼   ，（ii） ( ) ( )0.85 0,1 0.15 0,4i N Nε ∼ + ，



080 | Copyright © This work is licensed under a Commons Attibution-Non Commercial 4.0 International License.

数据科学技术、方法与应用 | DATA SCIENCE TECHNOLOGY, METHODS AND APPLICATIONS

（iii） ( ) ( )0.85 0,1 0.15 4,8i N Nε ∼ + 。

为了评估提出方法的性能，通过计算了均方差（MSE）和计

算时间（以秒为单位）。表2和表3给出了基于100次仿真模拟的

分位数水平τ 为0.2，0.5和0.8的结果。

表2 不同 K 和τ 下对应 MSE均值

Error τ 10D = 20D = 50D = 100D = 200D =

(i)

0.2 0.110 0.108 0.110 0.113 0.116

0.5 0.107 0.102 0.098 0.102 0.101

0.8 0.113 0.116 0.107 0.109 0.109

(ii)

0.2 0.117 0.115 0.110 0.114 0.121

0.5 0.110 0.114 0.109 0.100 0.106

0.8 0.112 0.108 0.115 0.115 0.105

(iii)
0.2 0.156 0.162 0.164 0.152 0.163

0.5 0.148 0.158 0.150 0.141 0.149

0.8 0.153 0.159 0.146 0.152 0.158

表3 不同 K 和τ 下对应计算累计的时间（ 210− 秒）

Error τ Method
10D = 20D = 50D = 100D = 200D =

(i)
0.2 All 3.158 5.83 17.468 41.65 80.968

OHR 0.517 0.494 0.621 0.904 0.905

0.5 All 4.519 7.775 18.267 33.121 63.018

OHR 0.737 0.875 0.762 0.76 0.765

0.8 All 4.749 9.496 22.363 41.797 80.626

OHR 0.840 0.713 0.840 0.765 0.813

(ii)

0.2 All 5.240 8.645 22.612 39.706 76.955

OHR 0.793 0.743 0.869 0.842 0.865

0.5 All 4.506 7.495 17.795 32.365 62.381

OHR 0.698 0.820 0.890 0.709 0.818

0.8 ALL 5.269 9.400 21.728 40.563 78.291

OHR 0.794 0.778 0.750 0.769 0.794

(iii)
0.2 All 3.035 5.842 15.422 36.817 72.718

OHR 0.520 0.489 0.620 0.784 0.763

0.5 All 4.204 8.072 17.581 32.545 62.067

OHR 0.831 0.735 0.718 0.898 0.743

0.8 All 4.933 8.534 9.592 37.112 72.652

OHR 0.703 0.757 0.882 0.735 0.898

从表2和表3可以得出以下结论：

1.关于表2中的 MSE，所有估计量 MSE的结果都相对非常

小，即是在重尾噪声下，所对应的均方误差依然相对较小，估计

值都接近真值，因此提出的在线估计量具有稳健性。

2.关于表3中的计算时间，注意到，对于任意给定数量的机器

和分位数τ ，提出的估计量（OHER)比全数据集更快，当全数据

集所花时间不断上升时，可更新处理的时间变化极低并维持在极

短时间内，在单位 210− 秒下，流数据所耗费时间全部达到毫秒级满

足实时处理要求，并且随着流的数目从 10D = 到 200D = ，处理时间

差异远小于流的增加量，验证随着流数的增加，流数据实时处理

的仍具有可行性。

五、结束语

本研究提出基于 Huber损失函数的稳健期望分位数回归的在

线可更新估计方法，仅使用历史汇总统计量实现参数增量更新，

在重尾噪声下给出实时高效的稳健估计。在满足特定假设条件

下，建立估计量的渐近性质。通过数值实验进一步验证，该方法

在流式计算环境中处理大规模数据集时，该方法在保证统计效率

的同时，显著提升了计算时效性。
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