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一、相关工作

论文综述了语义场景分类研究，分析了现有分类算法的性

能，并指出了语义分类中存在的问题，特别关注室内场景分类的挑

战 [1]。针对目前 Deep Web分类研究中所采用的 Post-query查寻

探测方法缺乏语义支持的问题，提出一个基于本体的语义查询探

测分类方法训练文本经过 DeBERTa模型神经网络后，得到原始文

本的特征向量表示，再与解释序列的特征向量进行融合，以实现

极短文本的层次分类 [2]。提出了一种结合多元语义特征和图卷积神

经网络 (GCN)的短文本分类模型，将语义特征同短文本一起构建

一个多元异构图，利用 GCN学习短文本更深层特征，进而实现短

文本分类 [3]。提出了一种文本分类模型 SEB-GCN,其在文本词共
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摘      要  ： � 经典的语义分类算法，在中文上直接使用，会出现不同的问题。将英文语句切分成单词，根据单词出现的次序，英文

语境中，影响不大。中文的字与字之间，前后是关联的。一个字出现在不同位置，含义是不同的。中文语义，根据区

位码与汉字建立一一对应的关系。实验显示，基于分句为字，区位编码这两个原则，本文提出的中文语义分析算法取

得了良好效果。
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现图的基础上加入了句法文本图与语义文本图，提高模型的分类

效果 [4]。设计一种面向分类网络的视觉语义解释模型，对飞机类别

进行分类 [5]。构建基于 MASK机制的词类别预测任务对预训练模

型 BERT进行微调，以学习单词与类别的关系，方法在公开数据

集上，分类准确率得到提高 [6]。提出了解耦的共享语义空间嵌入方

法，改进了利用标签语义信息的方法，利用预训练模型中的先验知

识增强标签层次结构信息．实验结果表明，该方法在公开数据集上

优于目前最先进的多标签文本分类模型 [7]。针对文本语义特征，语

境语义特征和标记实体语义特征，建立多重语义融合机制，,实现

关系分类模型 [8]。该模型提升了关系分类模型的性能。[9]自提出了

一种基于标签语义注意力的多标签文本分类方法，依赖于文档的文

本和对应的标签，使用双向长短时记忆获取每个单词的隐表示，能

引言

近年来，语义分类成为研究热点，1995年提出的长短程记忆方法取得良好效果。前向网络预测下一个单词，使用回归网络可以根据

所有单词实现预测。英语语境中，LSTM分成两个步骤：首先，将训练集中单词按出现次序编码。虽然测试集中也做同样操作，同样的

单词由于出现次序不同，编码也不同。第二步，为了保证语句长度相同，长语句尾部截除，短语句尾部增加空格补齐语句长度。语义是

连续的。文章是把相互关联的词连接而成的。LSTM使用长程协方差学习和分类。它从数据时间戳中学习到长程依赖。文本输入 LSTM

后，先转换成数据序列，将单词编码。为得到更好结果，网络中增加单词嵌入层。它将词典中的单词，变成一个数值向量，而不采用标

量索引。这种嵌入，采集单词语义细节。通过一个向量算法将单词关系模型化，语义相似的单词就有了相似向量。

本文在传统 LSTM基础上，根据中文语境，做了改进。构建了新的 LSTM模型，遵循“分句为字，固定编码”原则，对文本语句实

现内容分析，取得较好实验结果。
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够有效地捕获重要的单词，并且其性能优于当前先进的多标签文本

分类算法。[10]提出一种利用层级标签语义信息引导的极限多标签文

本分类模型提升策略，在训练和预测过程中给予模型层级标签引导

的弱监督语义指导信息，能够有效提升现有模型性能。[11]提出了一

种创新点语义识别与分类方法，将科技文摘按照句法和语义功能进

行6分类算法处理，然后对6分类算法结果进行了类与句子位置的

数量分布统计分析。实验结果表明，这种方法算法简便，分类精度

高，普适性好。[12]提出一种结合深度卷积神经网络和集成分类器链

的多标记图像语义标注方法，利用深度卷积神经网络学习图像的高

层视觉特征，基于获取的视觉特征与图像的语义标记集训练集成分

类器链，与一些当前国际先进水平的方法相比，文中方法的鲁棒性

更强，标注结果更精确。[13]提出基于语义依存分析的图网络文本分

类模型，对文本进行语义依存分析编码，快速挖掘语义依存信息，

使得网络更快地收敛。

二、算法改进

算法分成三个阶段：阶段1：收集数据，获取汉字。阶段2：

数据预处理和特征抽取。阶段3：数据分割，模型训练和验证。

卷积可用如下公式表示：

其中，输入矩阵是一个卷积核。借助 LSTM基本结构，我们

自建了一个模型。输入为二分输入，隐含层宽度为10，全连接层

宽度为4。与英文处理相比 [14]，中文算法改进了语句分割和数据编

码。在 GB2312-80汉字库中，每个汉字都有固定编码，分为区码

和位码。将语句分割成单个汉字，并用区位码对汉字编码。

三、实验结果分析

我们收集有价值的数据总共有6000条。涉及酒店预订、客房

服务、投诉建议和其他评价。为了验证算法，我们设计了三个维

度的实验。分别从输入宽度、层数和数据量的变化，检验算法的

有效性，最后，根据实验，选定最佳参数，得到优化模型。

初始情况，隐含层数设定为100，输入宽度设定为20，数据

量取100。首先，将输入神经元数目增加到200，观察实验结果。

经过196轮训练，学习率达到0.0073052，网络快速收敛。根

据观察，神经元数目增加，对训练不是总是有益的。当输入神经

元数目增加到一定程度时，梯度下降速度不再明显，错误率反而

增加了。训练到70轮时，学习率下降36%，训练时间减少142%。

实验结果与理论分析基本吻合。

隐含层数目增加，层间交互增加，网络复杂程度增加。因为

一层相当于一个函数，增加层数计算更加精确，计算复杂度提

高，耗费的时间更多 [15]。训练到458轮时，梯度衰减逐渐平缓。

平均学习率下降，显示神经网络层数目对网络模型有很大影响。

模型训练需要大数据支持。我们将6000个数据分成三部分，

70%用于训练，20%用于验证，10%用于测试。也就是用4200条

语句用于训练，1200条语句用于验证，600条语句用于测试。

实 验 显 示， 验 证 正 确 率 达 到95.17%， 测 试 准 确 率 达 到

100%。遵循“断句为字，固定编码”原则，LSTM网络能够成为

中文语义分类的理想算法。

 > 图1 训练结果展示图

四、结束语

从语句中分割出短语，是一件很难的工作，而且，不同的规

则和语境，对短语分割有很大影响。即使采用人工分割，由于不

能设计出统一规则，分割结果千差万别。汉字作为计算机 ASCII

基本集上的编码集，每个汉字都是由内码和形码编码生成的。汉

字集是固定的二维矩阵，能够实现汉字与数值的一一对应。每个

汉字有固定的释义，用汉字作为语义基元，能够减轻语句切割的

难度，又能保障不同语句的中的汉字编码统一。基于深度学习的

语义分析算法，用于中文语境，是否合适，是否正确，有待于进

一步深入研究。本文提出的解决方案，在中文语义理解上是一种

有益的尝试，从实验结果看，是可行的。未来，在中文语境进行

语义理解和分析，可以探索更多的深度学习算法。
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