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Detection and Identification Method of Large-span Bridge Diseases
Based on Ground Penetrating Radar

Wang Ziging, Han Zhigiang, Zhuo Yajuan, Gong Jun
Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024
Abstract : Due to the fact that existing ground—penetrating radar technology has not been used in the field of
bridge disease detection, and the current ground—penetrating radar technology has issues with low
efficiency and difficulty in detecting complex diseases, which cannot meet the requirements for real—
time detection efficiency of large—span bridge diseases, an innovative intelligent detection scheme
based on ground—penetrating radar is proposed. This method uses ground—penetrating radar to collect
dataset photos, establishes a deep learning model based on the YOLOv8n model for training and
evaluation, detects and identifies large—span bridge diseases, and deploys it on lightweight vehicle—
mounted equipment, achieving an accuracy rate of 88.9%, which meets the detection requirements.
Keywords : ground-penetrating radar; deep learning; YOLOv8n; model deployment
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