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Abstract: Metaverse is a transformative stage in the 
digital revolution, focusing on the development of 
an interactive and hyper-spatiotemporal ecosystem. 
This ecosystem is built upon various technologies, 
such as digital twins and extended reality. The 
application of the metaverse in power systems can 
significantly advance their digitalization level. This 
paper introduces a novel concept of meta-power 
to represent digitalized power systems driven by 
the metaverse. Supported by multiple technologies, 
the meta-power is a power ecosystem with high 
interactivity and hyper-spatiotemporal capabilities. 
The multi-technicity of meta-power enhances the 
stability, flexibility, reliability, safety, and economy 
of power systems. Furthermore, its high interactivity 
improves the convenience and immersion of power 
system monitoring and maintenance. Additionally, its 
hyper-spatiotemporal capability overcomes spatial 
and temporal limitations in power system operations 
and planning, providing benefits in evaluating and 
deducing future energy development strategies. 
This paper presents a comprehensive exploration 
of meta-power, encompassing its architecture, 
characteristics, enabling technologies, and application 
scenarios, aiming to provide theoretical and practical 
implications, respectively. At the theoretical level, this 
paper can stimulate research and development efforts 
in new metaverse technologies for power systems. 

At the practical level, it serves as a guide for power 
system digitalization, facilitating the advancement of a 
sustainable economy while ensuring the reliability and 
safety of power systems.
Keywords: Artificial intelligence; Digital twins; 
Extended reality; Internet of Things; Metaverse; Power 
systems

1. INTRODUCTION

CARBON, in various forms, is widely recognized as
having a detrimental impact on the environment. 

In the pursuit of sustainability, numerous countries 
have made commitments to achieve carbon peaking and 
carbon neutrality. The widespread adoption of renewable 
energy sources and the increasing prevalence of electric 
vehicles are recognized as pivotal strategies in realizing 
these dual objectives of carbon peaking and carbon 
neutrality [1]. However, the widespread deployment 
of renewable energy sources and electric vehicles 
necessitates the development of flexible power systems 
capable of accommodating the intermittent nature of their 
energy supply [2]. Smart grid, operating as a digitalized 
power system with bi-directional data transmission 
and computational intelligence, plays a vital role in 
enabling the flexible operation necessary for the seamless 
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integration of renewable energy sources and electric 
vehicles into power systems [3].

The smart grid concept was first introduced in 
Wired Magazine in 2001, which prompted various 
countries to initiate research and projects related to 
the implementation of smart grid technology [4–6]. The 
advancement of communication and computation 
infrastructure has enabled power systems to become 
smarter, allowing for bi-directional data transmission and 
decision-making based on big data analysis [7]. The smart 
grid has significantly enhanced the stability, flexibility, 
reliability, safety, and economy of power systems [8]. 
However, there is still considerable room for improvement 
in the digitalization efforts of the smart grid, particularly 
in two aspects: ubiquitous information visualization and 
intelligent hyper-spatiotemporal operations. Ubiquitous 
information visualization is user-oriented digitalization 
that enhances user convenience and immersion within 
the power plant environment by providing access to real-
time operational information [9]. However, the current 
level of information visualization in power systems needs 
to be improved to ensure a seamless and immersive user 
experience, highlighting the importance of enhancing 
this aspect. A second improvement that can be made is 
intelligent hyper-spatiotemporal operation, which belongs 
to system-oriented digitalization. Currently, the historical 
and real-time data of the power systems are analyzed, 
but the data analysis capability under unprecedented 
conditions is weak, indicating that the analysis capability 
still needs to be improved [10].

In 2021, the emergence of non-fungible tokens has 
ushered in a new era for the digital world, providing 
a means to guarantee the uniqueness and authenticity 
of digital assets and sparking a surge of interest in 
the metaverse. The term ‘metaverse’ is derived from 
the combination of the prefix ‘meta’ and the suffix 
‘verse,’ representing a cohesive value system and an 
independent economic framework that is interconnected 
with the physical world [11]. Initially introduced in Neal 
Stephenson’s science fiction novel ‘Snow Crash,’ the 
metaverse portrays a shared virtual reality inhabited by 
millions of users, and the concept has subsequently been 
embraced and further developed in diverse technological 
and cultural contexts [12]. Recently, the industry has seen 
rapid progress in applying metaverse, particularly in the 

Internet, transportation, aerospace, and manufacturing 
industries [13]. In the Internet industry, Facebook has 
purchased the Oculus for deeper development of virtual 
reality and augmented reality, aiming to provide a new 
customer experience. Microsoft has taken over Activision, 
one of the biggest developers of online gaming, to 
prepare for the metaverse [14]. In the transportation 
industry, the Invisible-to-Visible (I2V) technology, which 
aims at improving driving safety by providing drivers 
with imperceptible road information, has been developed 
[15]. The aerospace industry has also used the metaverse, 
with Boeing utilizing mixed reality to train personnel to 
maintain Boeing 737 aircraft [16]. Nvidia has developed 
the world’s first virtual collaboration and simulation 
platform, called Nvidia Omniverse, which can improve 
the efficiency of new product development (NPD) in the 
manufacturing industry.

In addition to the initiation of metaverse-related 
projects in industry, academic researchers have also 
actively pursued investigations into the metaverse. 
These research endeavors encompass a comprehensive 
exploration of the metaverse, including its definitions, 
characteristics, architecture, enabling technologies, 
and application scenarios. Regarding the definition of 
the metaverse, academia lacks a singular consensus, 
and Al-Ghaili et al. [17] have compiled and summarized 
various definitions proposed by scholars. In terms of 
characteristics, Ning et al. have identified characteristics 
of the metaverse, including multi-technicity, high 
interactivity, and hyper-spatiotemporality [18]. As for 
the architecture of the metaverse, its construction 
requires five primary modules: reality, virtuality, virtual-
reality interaction, intelligent analysis, and human-
machine interaction (HMI) [19]. Among these modules, 
reality serves as a reference for modeling, the virtuality 
creates either a virtual world that differs from reality 
or a mirror world that aligns with reality, the virtual-
reality interaction facilitates the transfer of information 
between reality and the virtuality, the intelligent analysis 
combines and analyzes data from both reality and the 
virtuality to provide users with analytical results and 
intelligent decisions, and the HMI enables the transfer of 
information between the metaverse and its users. Enabling 
technologies for the metaverse encompass digital 
twins (DTs), Internet of Things (IoTs), communication 
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networks, big data management, computing strategies, 
artificial intelligence (AI), and advanced HMI [20–22]. 
Advanced HMI in the metaverse differs from traditional 
2D interfaces and incorporates extended reality, an 
umbrella term encompassing virtual reality, augmented 
reality, and mixed reality, enabling users to explore a 3D 
virtual world with an immersive experience [23–25]. For 
example, the Microsoft HoloLens headset enables mixed 
reality for engineering applications [26,27]. The extended 
reality market is estimated to reach approximately USD 
250 billion by 2028 [28]. In terms of application scenarios, 
the Accelerated Research Foundation has categorized the 
metaverse into four scenarios: augmented reality, daily 
recording, mirror world, and virtual world [29]. This paper 
will explore the application of the metaverse in power 
systems from these perspectives. 

Previous studies have conducted reviews and surveys 
on various aspects of the metaverse. Dionisio et al. have 
summarized metaverse development in terms of reality, 
universality, interoperability, and scalability [30]. Lee 
et al. have conducted a survey exploring user-centric 
factors and future research agendas [22]. Khan et al. have 
investigated wireless communication architectures for the 
metaverse and discussed its potential impact on improving 
wireless systems [31]. Falchuk et al. have focused on 
privacy issues in the metaverse and proposed privacy 
protection measures for social interactions [32]. Huynh-
The et al. have reviewed blockchain technology for the 
metaverse [33]. While many of these studies concentrated 
on enabling technologies, networking, security, or 
privacy concerns associated with the metaverse, few 
papers have specifically addressed its application in 
power systems [34]. Currently, there are two papers that 
touch upon the application of the metaverse in power 
systems [35,36]. Among them, Abou El Houda and Brik [35] 
have proposed a concept of next-power, facilitating P2P 
energy transactions using virtual economic systems and 
blockchain technology of the metaverse. Zhang and Liu [36] 
have developed a concept of meta-energy and described 
its application to power system operations from four 
aspects: (1) Intelligent monitoring and perception, (2) 
Intelligent information communication and management, 
(3) Intelligent modeling and simulation technology, and
(4) Intelligent optimization and control. Although these
papers have provided the application of some metaverse

enabling technologies in power systems, they do not 
comprehensively cover other aspects such as architecture, 
characteristics, enabling technologies, and application 
scenarios. In comparison, this paper offers a more 
comprehensive review of the application of the metaverse 
in power systems.

The application of the metaverse in power systems 
holds the potential to propel the digitalization of the 
power industry, offering numerous benefits. Leveraging 
multiple enabling technologies of the metaverse, 
power systems can experience improvements in 
stability, flexibility, reliability, safety, and economy. 
The high interactivity of the metaverse can enhance 
the convenience and immersion of power system 
monitoring and maintenance. Additionally, its hyper-
spatiotemporality can overcome the spatial and temporal 
limitations of power systems, expediting the evaluation 
and deduction processes for future energy strategies. This 
paper defines the application of the metaverse in power 
systems as meta-power. Section II provides a conceptual 
explanation of the meta-power. In Section III, key 
enabling technologies that can achieve the meta-power 
are analyzed. Section IV presents application scenarios of 
the meta-power. Section V discusses the challenges and 
opportunities associated with the meta-power. Finally, 
Section VI concludes the paper. The hierarchical structure 
of the paper is shown in Figure 1.

Figure 1. Hierarchical structure of the paper.

2. CONCEPT OF META-POWER

2.1. ARCHITECTURE
Meta-power is the application of the metaverse in 
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power systems, and its architecture encompasses five 
fundamental modules: real power systems, virtual power 
systems, virtual-reality interaction, intelligent analysis, 
and HMI [36]. Within the me-power architecture, the 
virtual-reality interaction module facilitates bi-directional 
data transmission, enabling seamless communication 
between the real and virtual power system modules. 
The intelligent analysis module merges and analyzes 
data from both the real and virtual domains, generating 
valuable information or decisions. The HMI module 
serves as the interface through which users can access 
and interact with information pertaining to both real and 
virtual power systems. The meta-power architecture 
consists of two layers: the infrastructure layer and the 
platform layer [11]. The infrastructure layer encompasses 
the real power system, virtual power system, and virtual-
reality interaction modules. Conversely, the platform 
layer comprises the intelligent analysis and HMI modules, 
as depicted in Figure 2. In the infrastructure layer, the real 
power system module forms the essential skeleton for the 
virtual power system module to build upon. The virtual 
power system module serves as a digital representation 
in the meta-power, capable of adapting to dynamic 
updates from the real power system [37]. The key enabling 
technology that facilitates the realization of the virtual 
power system module is DT technology [38]. The virtual-
reality interaction module acts as a communication 
medium between the real and virtual power systems, 
responsible for collecting, exchanging, and storing 
information from both real and virtual power systems. 
Key enabling technologies for realizing the virtual-
reality interaction module include IoTs, communication 
networks, and big data management [39–41]. The intelligent 
analysis module in the platform layer acts as the ‘brain’ 
in the meta-power, enabling intelligent power system 
operation and its enabling technologies include computing 
strategies and AI [42,43]. The HMI module serves as the 
communication bridge between the meta-power and its 
users, with extended reality technology being the key 
factor in its realization [24,25].

In the infrastructure layer, the connection between 
the real power system, the virtual power system, and 
the virtual-reality interaction modules constitute four 
scenarios of the meta-power: augmented reality, daily 
recording, mirror world, and virtual world. Augmented 

reality is a scenario that enables one-way information 
flow from the virtual power systems to the real power 
systems, facilitated by the virtual-reality interaction 
module. This enables the real power systems to receive 
virtual data and information to aid in operating real power 
systems. The scenario of the daily recording involves a 
two-way information flow between the real and virtual 
power systems via the virtual-reality interaction module, 
which records and reproduces abnormal data and events 
from the real and virtual power systems. In the scenario 
of the mirror world, there is a two-way information flow 
between the real and virtual power systems through 
the virtual-reality interaction module. The virtual 
power system module acts as a parallel controller. It is 
responsible for gathering data from the real power system 
module and analyzing it to issue control commands to the 
real power system module. In the virtual world scenario, 
there is a one-way information flow from the real power 
system module to the virtual power system module 
through the virtual-reality interaction module. The design 
of the virtual power system module based on real power 
systems can provide a virtual power plant environment 
for designers and interns to assist in power plant design 
and training.

Figure 2. Architecture of the meta-power.

2.2. CHARACTERISTICS
Meta-power is the application of the metaverse in power 
systems, which shares the common characteristics 
of multi-technicity, strong interactivity, and hyper-
spatiotemporality as the metaverse [17]. The multi-
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technicity of the meta-power is reflected in its reliance on 
diverse technologies, including DTs, IoTs, communication 
networks, big data management, computing strategies, 
AI, and extended reality [24]. The strong interactivity of 
the meta-power is evident not only in the interaction 
between the real and virtual power system modules but 
also in the emphasis on the interaction between the meta-
power and its users. The hyper-spatiotemporality of the 
meta-power is reflected at both user and system levels. 
At the user level, the meta-power allows users to learn 
about and conduct research in power plant environments 
from the past or future in the temporal dimension. It also 
enables learning at any virtual power plant in the spatial 
dimension. At the system level, the meta-power enables 
the assessment and deduction of future energy strategies 
in arbitrary multi-operational conditions, especially 
unprecedented conditions in the spatial dimension [36].

The digitalization of power systems has advanced 
significantly, enabling stability, flexibility, reliability, 
safety, and economics in power system operations. Despite 
these advances, there is still considerable potential for 
further development of digitalization in power systems, 
particularly in ubiquitous information visualization and 
intelligent hyper-spatiotemporal operation. Ubiquitous 
information visualization is user-centric digitalization that 
seeks to visualize the operational information of power 
equipment across power systems and provide users with 
a convenient and immersive power system environment 
[30]. Intelligent hyper-spatiotemporal operation is system-
centric digitalization that refers to the ability to analyze 
data from power systems over historical, current, and 
future periods and under arbitrary operating conditions 
with AI algorithms [38].

The strong interactivity and hyper-spatiotemporality 
of the meta-power can effectively address the challenges 
related to ubiquitous information visualization and 
intelligent hyper-spatiotemporal operation in current 
power systems, thereby serving as essential characteristics 
of digitalized power systems. Implementing extended 
reality, such as holographic projections, can significantly 
enhance the convenience and immersion of operation and 
maintenance tasks. With the extended reality technology, 
the operators can quickly access operational information 
about power equipment from any location within the 
power plant environment and use these technologies to 

interact with power equipment and achieve ubiquitous 
information visualization. The virtual power system 
module based on DT technology is a key enabling module 
for achieving the hyper-spatiotemporality of the meta-
power. By creating virtual power systems that are parallel 
to real power systems, designers and operators can 
leverage these virtual systems to simulate and evaluate 
future energy strategies in the temporal dimension, as 
well as perform unprecedented scenario simulation to 
obtain operational dynamics across a vast number of 
power systems in the spatial dimension, thereby enabling 
intelligent hyper-spatiotemporal operation [36,37].

3. ENABLING TECHNOLOGIES OF META-
POWER

The implementation of the meta-power requires the 
collaborative operation of a real power system, virtual 
power system, virtual-reality interaction, intelligent 
analysis, and HMI modules. Enabling technologies 
of virtual power systems, virtual-reality interaction, 
intelligent analysis, and HMI modules play indispensable 
roles, which have been applied in the generation, 
transmission, distribution, and consumption parts of real 
power systems, separately. The following subsections 
present enabling technologies for these meta-power 
modules.

3.1. VIRTUAL POWER SYSTEM MODULE
The virtual power system module serves as the digital 
backbone of the meta-power architecture. It enables power 
systems to leverage hyper-spatiotemporal characteristics, 
facilitating intelligent hyper-spatiotemporal operations. 
While conventional digitalization efforts have primarily 
focused on the real power system module, the meta-power 
architecture emphasizes the integration of both real and 
virtual power system modules. This integration allows 
for the supplementation of analysis results obtained from 
real power systems with those derived from virtual power 
systems, enabling a more comprehensive system analysis 
under unprecedented conditions. Implementing the virtual 
power system module relies heavily on DT technology, 
which is essential for its successful deployment and 
operation.

DT technology has gained significant recognition and 
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has been listed as one of the top ten strategic technologies 
for 2018 by Gartner due to its ability to virtually map the 
operational states of real systems. Rodiv has proposed that 
DT technology represents the next simulation paradigm, 
enabling real-time system simulation during both design 
and service phases [44]. In academia and industry, there 
is a widely accepted definition of DT: it is an integrated 
multi-physics, multi-scale, probabilistic simulation of 
an as-built vehicle or system that uses the best available 
physical models, sensor updates, fleet history, etc., to 
mirror the life of its corresponding flying twin. The initial 
concept of DT consisted of three components: physical 
assets, digital prototypes, and communication between 
physical assets and digital prototypes, as developed by 
Grieves and Vickers [45]. Subsequently, Tao et al. have 
introduced two additional components, DT data and 
service [46,47]. The architecture of DT with five components 
is shown in Figure 3.

Figure 3. Architecture of the digital twins.

The construction of DT typically involves two steps, 
which are DT modeling and updating. DT modeling 
involves four steps, including geometric, physical, 
behavioral, and rule modeling [48,49]. Geometric modeling 
primarily describes the structural/topological relationships 
in the physical assets. In terms of equipment, the 
geometric modeling tools include AutoCAD, CATIA, and 
SolidWorks, aiming to describe the shape, size, position, 
and assembly relationships of equipment elements. In 
terms of systems, the geometric modeling tools include 
PSCAD, SIMPOW, and SIMULINK, aiming to describe 
the network connection between different equipment. 

Physical modeling mainly includes the fundamental laws 
of physical assets. For example, the Newton-Euler law is 
the physical law describing mechanical characteristics, 
while the impedance law is the fundamental law 
describing electrical characteristics. Behavioral modeling 
focuses on describing the responses of physical assets to 
external drivers or disturbances over time. Rule modeling 
is a service-oriented process based on users’ requirements 
after geometric, physical, and behavioral modeling. It is 
an important part of the DT since it can provide different 
functions (e.g., pattern recognition, interpolation, 
prediction, and planning) for users. Rule modeling 
broadly consists of two parts: knowledge management 
and inference system design, which form the bulk of the 
DT service. DT updating is also a key part of the DT, as 
it ensures consistency between the physical assets and 
digital prototypes. Figure 4 shows the flowchart of DT 
updating. DT updating can be divided into two categories 
based on the updated parts: model update and parameter 
update. The model update involves a variation in the 
model structure, while the parameter update involves 
changing the model parameters. The DT can be divided 
into two categories based on the update strategy: Cycle-
based and event-based updates. The cycle-based update 
refers to the periodic updating of the models, whereas 
an event-based update is triggered by the difference 
between the physical assets and digital prototypes with 
performance metrics [50].

Figure 4. Flowchart of the digital twins updating.

The DT is a versatile technology with various 
applications in power systems, including three-
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dimensional visualization for efficient management of 
power plants, optimization of power plant operation 
for enhanced performance, health management of 
power equipment to minimize downtime, construction 
of genetic grid models for effective planning, grid 
design to ensure optimal utilization of resources, and 
asset management for maintenance activities [51–55]. 
Table 1 lists some applications of DT technology in the 
generation, transmission, distribution, consumption, and 
market sectors of power systems. The DT technology 
can be leveraged to build virtual power systems that 
accurately replicate the operational conditions of 
real power systems, offering a low-cost, low-risk 
environment for operators to perform detailed analysis 
throughout the lifecycle of the power systems [56]. The 
technology can facilitate more informed decision-
making and enable proactive maintenance, ultimately 
leading to improved reliability and economy in the 
power systems. In applying DT to power systems, there 
are two categories of physics-based models: structure-
based finite element modeling and topology-based 
system dynamics modeling. Structure-based finite 
element modeling is primarily utilized for simulating 
virtual power equipment and finds its applications in 
various subsystems of power systems, such as generation, 
transformation, transmission, distribution, consumption, 
and storage [57–60]. Topology-based system dynamics 
modeling is mainly used for simulating virtual power 
grids, with the models based on realistic transmission 
and distribution networks established by IEEE [61,62]. 
Although physics-based virtual power systems effectively 
explain various phenomena, this modeling method can 
be computationally demanding, requiring significant 
running time. As information and communication 
infrastructure in power systems undergoes large-scale 
modeling, researchers are increasingly investigating data-
driven models. However, the high-dimensional nature of 
real power systems presents a challenge for conventional 
machine learning (ML) models to express virtual power 
systems accurately. The random matrix can represent 
data in high-dimensional spaces, while deep learning 
(DL) can effectively handle the strong nonlinearity of
real power systems. Combining these two techniques
can offer feasible solutions for developing data-driven
models for virtual power systems that can overcome

the challenges of the high dimensionality and strong 
nonlinearity of power systems [63]. The DT technology can 
simulate both the cyber and physical sides of real power 
systems, which means that the DT can model the physical 
infrastructure of real power systems and the associated 
cyberinfrastructure, including communication and 
control systems. Several institutions have constructed test 
platforms capable of simulating the physical and cyber 
infrastructure of real power systems to facilitate related 
research about the cyberinfrastructure. These platforms 
include the hardware loop test platform in the USF Smart 
Grid lab, the IEC 61850-based Smart Grid test platform, 
and other test platforms that serve different functions. 
These test platforms provide researchers and engineers 
with a realistic environment for testing and evaluating the 
performance of power systems and energy strategies in a 
controlled and safe manner [64,65].

Once the virtual power systems have been built, 
updating them with data from the real power systems is 
essential, ensuring the accuracy of current virtual power 
systems. There is already some research on the update 
of virtual power systems. At the power equipment level, 
Qin et al. have employed a back propagation neural 
network to correct the error between the virtual bearing 
and real bearing [66]. At the system level, Saad et al. have 
established a physical model to model the physical and 
cyber-side of the power systems and employed real 
data to update the parameters of the physical models to 
achieve an update with an average error of no more than 
4% from the real power systems [67].

3.2. VIRTUAL-REALITY INTERACTION MODULE
The virtual-reality interaction module of the meta-power 
serves as a vital communication interface between real 
and virtual power system modules. The virtual-reality 
interaction module relies on IoTs, communication 
networks, and big data management, facilitating crucial 
tasks of sensing, transmitting, analyzing, controlling, and 
managing.

3.2.1. INTERNET OF THINGS
IoTs comprise three fundamental components: the 
device, the edge, and the cloud. In the context of IoTs, 
the device refers to a physical endpoint that collects data. 
Conversely, the edge represents a connected network 
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of multiple operating devices linked through logical 
relationships. Finally, the cloud is a centralized hub for 
multiple domains and an application-centric integrated 
IoT service system, enabling efficient data analysis and 
system control. The IoTs have several applications in 
power systems, including but not limited to Supervisory 
Control and Data Acquisition (SCADA), Wide Area 
Measurement System (WAMS), and Advanced Metering 
Infrastructure (AMI) [79]. Figure 5 illustrates the schematic 
diagram of ubiquitous power IoTs, which are based 
on SCADA, WAMS, and AMI systems. The SCADA 
system is a centralized IoT system that employs a main-
servant architecture for process control in power systems. 
The SCADA system primarily comprises intelligent 
electronic devices (IEDs), remote terminal units (RTUs), 
programmable logic controllers (PLCs), and monitoring 
consoles, which are based on the main-servant architecture, 
database, and communication infrastructure [80]. IEDs are 
employed to monitor the operational conditions of power 
equipment, including circuit breakers, transformers, and 
capacitors. RTUs interact with IEDs, convert the sensor 
readings into a standard data format, and transmit the 
sensor data to monitoring consoles. PLCs are utilized 
for implementing process control, while monitoring 
consoles are responsible for collecting data from RTUs, 
performing data analysis, and sending control commands 
to PLCs. The database plays a crucial role in the SCADA 
system by facilitating the storage and management of 
data. The communication infrastructure is an essential 
component of IoTs, enabling the connection between 
various subsystems [81]. The WAMS is an IoT that 
comprises phasor measurement units (PMUs), phase 
data concentrators (PDCs), and satellites [82–84]. It can 
provide synchronized phase measurement information 
every 20ms with a synchronization error of 1ms for each 
data point. PMUs are considered the key components of 
IoTs in WAMS. These units are capable of generating 
voltage, current, frequency, and phase angle signals at a 
frequency of 60Hz, and some advanced PMUs can even 
generate electrical signals at a higher frequency of 100Hz. 
Implementing WAMS has made it possible to analyze the 
transient stability of power systems with greater accuracy. 
The conventional smart meter-based IoT system is based 
on automatic meter reading (AMR) technology, which 
is designed for one-way communication and can only 

monitor the distribution network but cannot control it 
[85]. To address the issue of controlling the distribution 
network, an advanced metering infrastructure (AMI) 
system that utilizes bi-directional communication is 
proposed. Unlike the centralized SCADA system, the 
AMI system is a distributed IoT system that enables 
interconnection between smart meters, between smart 
meters and IEDs, and between smart meters and other 
control systems [86]. The AMI system has a broad range of 
applications, including obtaining power quality, electricity 
consumption, and fault records at the customers’ end and 
monitoring the power generated or stored by distributed 
energy sources [87–89].

IoTs find applications across various aspects of the 
power sector, including power generation, transmission, 
distribution, and consumption. In power generation, IoTs 
can enhance the efficiency of distributed energy generation 
and ensure reliable and safe operation. For renewable power 
plants, IoTs can consider the fluctuations in renewable 
power generation through cloud computation and weather 
prediction algorithms. This enables optimal power plant 
operation and predictive maintenance [90]. With respect to 
transmission and distribution, IoT can help reduce power 
losses and electricity thefts by adjusting or detecting 
electrical parameters such as voltage, current, frequency, 
and phase [91]. With respect to power consumption, IoT 
technology is the key driver to the growth of microgrids or 
nanogrids, smart home energy management systems, and 
distributed energy storage systems. As a result, consumers 
gradually become prosumers, which can participate in 
power exchanges with the electrical network. Examples of 
scenarios where customers are able to participate in power 
exchanges with the electric network include smart home 
energy management and electricity price schemes [92].

3.2.2. COMMUNICATION NETWORKS
The regular communication operation of the IoTs 
is supported by effective data transmission through 
communication networks, which can be broadly classified 
into wired and wireless communication technologies. 
Some of the commonly employed wired communication 
methods include power line communication (PLC), 
digital subscriber line (DSL) communication, and fiber 
optic communication [93]. The wireless communication 
networks include ZigBee, wireless mesh networks (such 
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as radio frequency networks), and cellular communication 
networks such as 3G, 4G, 5G, and WiMAX [94–96]. The 
application of communication networks in the power 
IoTs has matured due to advancements in the field. 
The PLC, which operates in the 40-500kHz frequency 
band, is used in the substations on the high voltage 
side, the AMI systems, vehicle-to-grid systems, and 
home energy management systems on the medium and 
low voltage sides, as well as 1,100kV AC/DC lines [97]. 
Due to high bandwidth and reliability, DSL and fiber 
optic communication are utilized in SCADA systems 
to facilitate communication between substations and 
dispatch centers.

Due to its low power consumption, low data rate, 
and low cost, ZigBee is particularly well-suited for 
applications such as intelligent lighting, electrical 
automation, and AMR. Wireless mesh networks, 
including radio frequency networks, can transmit 
data in the AMI system for smart metering. Cellular 
communication networks, such as 3G, 4G, and 5G, can 
also transmit smart meter data. WiMAX networks can 
be utilized as backhaul networks to connect remote 
and rural areas to the main grid. Due to its short-
range coverage and high data transmission rate, WiFi 
communication is suitable for user-side applications, such 

as home energy management systems and vehicle-to-grid 
systems. Satellite communication can serve as a reliable 
backup communication solution for power systems, 
providing redundancy in the event of communication 
network malfunction. To ensure efficient and secure data 
transmission in power IoTs, it is essential to consider 
high-speed, low-latency, and high-performance data 
transmission protocols such as fiber channel protocol and 
5G. Table 2 lists the wireless communication technologies 
employed in power systems [98]. In addition, quantum 
transmission technology has the potential to be applicable 
for communication, including quantum key distribution 
(QKD), quantum teleportation, quantum secure direct 
communication (QSDC), and quantum secret sharing 
(QSS).

Table 2. Application of wireless communication 
technologies in power systems

Technology Transmission 
distance Cost Application

Satellite > 1500 km High Wind and solar 
plants

LTE-M < 200 km Moderate Energy meter

NB-IoT < 50 km Low Grid 
communication

LoRA < 50 km Low Lighting

Figure 5. Ubiquitous power internet of things.
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3.2.3. BIG DATA MANAGEMENT
Big data management involves two primary strategies: 
database management and data cluster management. 
Database management is a strategy that integrates a 
variety of storage devices to provide data storage and 
external business access. Data cluster management 
involves collecting, organizing, and integrating 
heterogeneous data sources into a new centralized big 
data source, which is then managed and made available 
for access.

Two types of databases are relational and non-
relational databases. The conventional relational database 
is not suitable for handling massive data since it requires 
storing the correlation between data, while non-relational 
databases do not have a fixed table structure and do not 
require connections between data, making them more 
suitable for high-performance read and write operations 
for massive data and better meeting the data management 
requirements of power big data era.

Data cluster management primarily utilizes cluster 
system architecture developed by the Apache Foundation, 
which includes Hadoop, Storm, Spark, and Drill [99]. The 
application of Hadoop is mature, and this paper focuses 
on analyzing the architecture of Hadoop. The Hadoop 
architecture comprises three components, namely the 
distributed file system (HDFS), the distributed parallel 
programming model (MapReduce), and the distributed 
database (HBase). Among them, the HDFS can effectively 
store massive data, the MapReduce can perform massive 
data processing in large cluster sizes, and the HBase is a 
distributed non-relational database. Figure 6 is a Hadoop-
based data management architecture.

Big data management is a versatile technology that 
can be effectively applied at both the power equipment 
and grid system levels to extract meaningful insights 
from massive data. At the level of power equipment, a 
significant amount of data support is required for tasks 
such as wind turbine power forecasting. The application 
of big data management technology can provide the 
massive storage, management, and screening capabilities 
needed for more efficient data collection from wind farms, 
support the integration of renewable energy sources into 
the grid, and reduce the data processing costs associated 
with new energy strategies. Using IEDs, PMUs, and smart 
meters has significantly increased the volume of power 
data. The use of non-relational databases and distributed 
cluster system architectures can effectively integrate and 
analyze big data at the grid system level.

3.3. INTELLIGENT ANALYSIS MODULE
The intelligent analysis module can be likened to the 
neural center of the meta-power, as it is tasked with 
assimilating, manipulating, and scrutinizing information 
from the real and virtual power system modules. 
Compared to conventional digitalized power systems that 
only analyze data from real power systems, the meta-
power poses unique challenges in computing resource 
allocation and implementation of AI, as they require data 
processing from real and virtual power system modules. 
The intelligent analysis module, similar to conventional 
digitalized power systems, relies on computing strategies 
and AI as its key enabling technologies. The combination 
of computing strategies and AI allows for real-time 
analysis of power data while utilizing AI technology to 

Figure 6. Hadoop-based data management architecture.
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provide accurate decision support.

3.3.1. COMPUTING STRATEGIES
Computing strategies can be categorized into three types: 
Cloud, edge, and hybrid. Cloud computing involves 
transmitting all data to a data center for analysis, offering 
a high computing capability. The key services provided 
by cloud computing include infrastructure as a service 
(IaaS), platform as a service (PaaS), and software as a 
service (SaaS). However, this strategy necessitates all 
data being uploaded to the data center, significantly 
burdening the communication networks and potentially 
causing delays and security issues. Edge computing refers 
to analyzing data locally, which ensures real-time and 
secure analysis, but can only be performed on a small 
scale. Hybrid computing is a strategy involving utilizing 
local servers and remote data centers to analyze data. 
This strategy effectively allocates computing resources 
between the cloud and the edge, improving real-time 
performance and security in large-scale computing tasks. 
Such a strategy can be categorized into three types: 
Distributed computing, hierarchical computing, and 
federated computing. Each of these strategies involves 
different approaches to combine different computing 
resources, but they all aim to leverage the strengths of 
each computing resource to achieve better performance.

Cloud computing strategy is increasingly being utilized 
by power companies to perform high-volume and repetitive 
computing tasks, as well as conduct complex data analysis 
[100]. Cloud computing strategy can offer high-performance 
parallel computing capability that can be leveraged 
to enhance the efficiency of power flow calculation, 
reliability analysis, and safety assessment [101–103]. By 
utilizing cloud-based parallel computing, it is possible to 
achieve improved computational efficiency and increase 
the belief degree of analysis results. The computational 
requirement for time-domain simulation on large-scale 
power systems is considerably high. Using cloud-based 
high-performance parallel computing can potentially 
enhance the speed of time-domain simulation for large-
scale power systems.

Edge computing is becoming increasingly popular 
in power systems, as a result of the widespread usage 
of various edge devices, including intelligent relays, 
IEDs, smart meters, base stations, drones, and local data 

centers [104]. The primary objective of edge computing 
in power systems is to achieve low-latency analysis and 
control, which can be particularly beneficial in critical 
situations when fast decision-making is crucial. J. Tong 
et al. proposed a power protection system that utilized an 
edge computing strategy [105]. In addition, Peng et al. [106] 
have employed substation servers as edge computing 
nodes to locate faults in the grid systems with a trained 
neural network model.

Hybrid computing is a strategy involving integrating 
and coordinating cloud computing and edge computing 
to optimize the performance and economy of computing 
processes across different devices. Fusing the benefits 
of strong computing power in the cloud center and 
efficient low-latency performance in the edge nodes, this 
computing strategy optimizes the computing resource 
allocation to achieve optimal performance [107,108]. Liu 
et al. have employed a hybrid computing strategy and 
developed a deep reinforcement learning model to 
effectively manage energy in urban areas. The edge layer 
of the hybrid computing strategy has two tasks: 1. Collect, 
pre-process, and transmit power data to the cloud; 2. 
Request the latest deep reinforcement learning model 
from the cloud and regulate power flow accordingly. 
The primary function of the cloud is to utilize power 
data obtained from the edge layer to train the deep 
reinforcement learning model, and subsequently send the 
trained Q-values back to the edge for updating [109].

3.3.2. ARTIFICIAL INTELLIGENCE
AI technology includes expert knowledge and ML, among 
which ML has attracted widespread attention due to its 
strong learning capability [110,111]. Based on the learning 
paradigm, ML can also be categorized into supervised 
learning, unsupervised learning, and reinforcement 
learning, which is shown in Figure 7 [112]. In 2006, DL, 
which has the automatic learning capability, has been 
proposed. It improves the modeling capability of complex 
systems in the real world. In addition to the development 
of ML models, different learning strategies have been 
developed for different application scenarios such as 
single-task learning, multi-task learning, transfer learning, 
meta-learning, online learning, and continuous learning, 
as shown in Figure 8 [113]. ML models and corresponding 
learning strategies have extensive applications in power 
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systems, including power generation forecasting, energy 
management, power flow control, equipment health 
management, and grid fault detection.

With AI, it is possible to forecast power generation 
from renewable energy sources accurately. In the 
industry, the WeatherSentry software, a collaborative 
effort between Vaisala and Schneider Electric, is utilized 
in the power industry to predict wind turbine power by 
utilizing data from wind turbine speed and meteorological 
conditions. In academia, Jiao et al. proposed a wind 

turbine power forecasting model that combines a stacked 
auto-encoder, particle swarm optimization, and backward 
propagation algorithm [114]. There are many DL-based 
models for photovoltaic power generation for forecasting 
the power of photovoltaics [115].

In addition to power generation forecasting, AI has 
the potential to be utilized for load forecasting. The 
loads are influenced by factors such as electricity price, 
policy, season, etc., so it is difficult to establish accurate 
physical models. AI technology, especially DL, with 

Figure 7. Overview and classification of various artificial intelligence techniques.

Figure 8. Overview and classification of various machine learning strategies.
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its strong nonlinear capability, can effectively fit the 
relationship between loads and influencing factors to 
predict future loads. Load forecasting is divided into 
short-term and medium-to-long-term load forecasting. 
Kong et al. [116] and Wang et al. [117] utilized long short-
term memory (LSTM) networks and attention-based bi-
directional LSTM networks to predict short-term load. 
Rafiei et al. [118] proposed the use of a generalized extreme 
learning machine to train a wavelet neural network for the 
prediction of medium-to-long-term loads.

Intelligent control systems can automatically 
plan the operation of power systems, maximizing 
the efficiency of renewable energy-integrated power 
systems. Yin et al. [119] proposed a DL model for 
achieving optimal control of future grid systems that can 
be applied to power systems with different topologies. 
Zhang et al. proposed a consensus transfer Q-learning 
model for distribution networks, which realizes optimal 
power generation allocation for decentralized power 
plants based on the Q-value matrix [120].

The conventional methods to assess the health of 
power equipment depend on subjective feature extraction. 
However, the usage of DL, with its strong feature 
learning capability, has significantly improved health 
analysis automation. Islam et al. [121] have utilized an 
ensemble regression neural network to determine the 
health condition of power transformers, demonstrating 
its superior accuracy in estimating the health condition of 
transformers compared to expert knowledge systems.

AI can not only detect faulty power equipment but 
also identify abnormal operations in the grid systems, 
such as system fault identification and fault location 
positioning. Abdelgayed et al. [122] have employed various 
models such as decision trees, K-nearest neighborhoods, 
SVM, and naive Bayes to accurately identify fault 
patterns in a microgrid during system fault identification. 
The combination of wavelet transformation and SVM 
has been shown to be an effective model for identifying 
the fault locations in the transmission lines [123]. Table 3 
presents the application of AI in power systems.

Table 3. Application of artificial intelligence in power system

Power system 
applications

Research 
objectives

Artificial intelligence 
models Evaluation metrics Results References

Power 
generation 
forecasting

Solar power 
generation

Extreme learning machine RMSE and MAE The proposed model efficiently provides 
reliable and sharp predictive densities for very 
short-term power generation.

[124]

Wind speed 
forecasting

Interval deep belief 
network with a fuzzy 
type II inference system 
(FT2IS)

RMSE and MAPE The developed model can obtain more robust 
deep features as well as interval upper-bound 
and lower-bound parameters.

[125]

Wind and 
solar energy 
forecasting

Quality-driven loss 
deep neural networks 
(QDDNN) and 
hypernetworks (HN)

PI coverage 
probability, average PI 
width, and coverage-
width trade-off

Direct PI models (HN and QDDNN) clearly 
outperform quantile estimation in terms of 
width and coverage-width ratio.

[126]

Load 
forecasting

Long-term load 
prediction

Hierarchical 
decomposition self-
attention network

MSE and MAE Compared with existing models, the proposed 
model maintains stable forecasting performance 
and speed in long-term forecasting services 
and achieves the most reliable multivariate and 
univariate forecasting results.

[127]

Short-term load 
forecasting 
in residential 
buildings

Feed-forward 
neural network with 
backtracking adjustment 
of the learning rate

RMSE and R The proposed algorithm performs better than the 
other ML algorithms, revealing smaller RMSE 
differences compared to the classic Nesterov 
and DNN.

[128]

Short-term day-
ahead load 
forecasting

Ensemble deep residual 
network

MAPE Comparisons with existing models have 
shown that the proposed model is superior in 
both forecasting accuracy and robustness to 
temperature variation.

[129]
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Table 1 (Continued)
Power system 
applications

Research 
objectives

Artificial intelligence 
models

Evaluation metrics Results References

Intelligent 
system control

Transmission 
and distribution 
coordination

Multi-agent deep 
reinforcement learning

Score, deviation, 
oscillation, and 
violation

Experiments on integrated transmission and 
distribution systems demonstrate that the 
proposed framework can mitigate the impact of 
system disturbances and thus benefit the system 
operation.

[130]

Load shedding Deep reinforcement 
learning

Reward, global 
interpretability, and 
local interpretability

The proposed DRL model can quantify the 
importance of input features, which can explain 
the feature classification and probabilistic 
analysis of power systems better.

[131]

Autonomous 
voltage control

Deep Q-network (DQN) 
and deep deterministic 
policy gradient (DDPG)

Reward The DDPG algorithm has done a wider range 
of exploration in the beginning stage and 
demonstrates much better performance after a 
sufficient number of training scenarios.

[132]

Asset health 
management

Diagnostics 
of power 
transformers

XGBoost ROC and precision The proposed Shapley additive explanation 
method can explain the diagnosis results, which 
could extract the impacts of fault features on 
diagnosis and guide to improve the model 
performance

[133]

Prognostics of 
wind turbines

Multivariate time-series 
(MTS)-based mutual 
information estimator 
(MIE)

Misdetection rate, false 
alarm rate, accuracy, 
expected calibrated 
error, and maximum 
calibrated error

The experimental results show that the proposed 
approach has a significantly superior calibration 
performance than the other methods.

[134]

Predictive 
maintenance 
of power 
transformers

Advantage Actor-Critic 
(A2C) algorithm

Maintenance and 
power outage costs

The proposed policy achieves the least cost and 
power outage compared to the failure-based 
policy and myopic policies.

[135]

Grid anomaly 
detection

Transient 
stability 
assessment

Deep belief network False dismissal and 
false alarm

The proposed method is tested and the result 
demonstrates that the proposed method can 
perform rapid, accurate, and interpretable 
transient stability assessment.

[136]

Risk assessment 
of the maximal 
frequency 
deviation

Partitioning around 
medoids-Convex hull 
(PAM-CH) ensemble 
learning

Absolute error, 
relative error, and 
computational time

The proposed PAM-CH can achieve a high-
quality assessment verified with respect to 
accuracy and efficiency.

[137]

Power quality 
disturbance

Incremental neural 
network

Classification accuracy 
and learning efficiency

The proposed dynamic incremental learning 
method can train deep learning models in near 
real-time and adapt the model to learn new 
event types anticipated in a modern grid.

[138]

3.4. HUMAN-MACHINE INTERACTION MODULE
The HMI module plays a vital role in the communication 
between the meta-power and its users, serving as a 
component in enabling strong interactivity and ubiquitous 
information visualization in the meta-power. The HMI 
module in the meta-power utilizes XR and holographic 
projection technology for displaying information while 
employing wearable controllers for control.

Extended reality encompasses a range of immersive 
technologies, including augmented reality, virtual 

reality, and mixed reality devices. The augmented 
reality devices utilize sensors and visual interfaces to 
facilitate user interaction with the real environment, 
providing them with virtual information [139]. The virtual 
reality devices are designed to enable users to interact 
with virtual environments in which the actions of the 
users are confined solely to the virtual world and have 
no impact on the real world [140]. Mixed reality devices 
can enable interaction in both physical and virtual 
environments. Combined with robots, they can facilitate 
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the manipulation of real-world objects in the virtual 
world [141]. Laaki et al. have developed a remote surgery 
system that utilizes mixed reality technology, allowing 
a surgeon to operate on a digital avatar of the patient, 
which is then replicated on the patient’s physical body 
through a robotic arm [142]. Holographic projection is 
an advanced technology that utilizes optical techniques 
to display highly realistic three-dimensional images of 
objects, creating a virtual representation that appears to be 
tangible and interactive [143]. The holographic projection 
enables the display of three-dimensional images to users, 
which can be viewed from various angles without the 
assistance of extended reality devices using the naked eye. 
The advancement of holographic projection technology 
has resulted in a merging of the real and virtual worlds, 
creating a solid basis for realizing ubiquitous information 
visualization in the meta-power.

The HMI in the power industry has evolved 
through three generations of transformation. In the first 
generation, analog signals display information, while 
mechanical switches such as knobs and blades are 
employed for operation purposes. The second generation 
utilizes computer screens to showcase information and 
computer systems, such as Windows, to perform display 
and analysis. The third generation employs a mobile 
device operating system, such as Android, for display 
and analysis. The fourth generation will incorporate XR 
devices, holographic projection for display purposes, 
and wearable controllers for ease of operation. Figure 9 
shows the development of the HMI module in the power 
industry.

Figure 9. Development trend of human-machine interaction 

systems in the power industry.

In the meta-power, the HMI module emphasizes the 
interaction between the operators and the meta-power. 
Specifically, the meta-power provides immersive visual 
information to the operators through extended reality 
devices and holographic projection, and the operators 
control the meta-power through wearable controllers.

In the meta-power, augmented reality devices can 
be utilized to provide operators with digital information 
about real power systems. The augmented reality glasses 
can be more convenient for operators, eliminating the 
need to carry additional hand-held devices. For example, 
Gomes et al. designed an augmented reality device 
that enables the annotation of real data obtained from 
transformers, as well as visualization of data from the 
SCADA system directly on the transformers [144]. The 
meta-power offers virtual information to operators 
regarding the power systems through the utilization of 
virtual reality devices, allowing them to undergo training 
and gain knowledge. Gorski et al. have created two 
immersive virtual reality training scenarios designed 
to teach individuals how to operate switches in virtual 
substations and connect new cables in the distribution 
network. In these training scenarios, detailed operating 
procedures are provided, ensuring that trainees receive a 
thorough understanding of the processes involved in these 
tasks [145]. The meta-power utilizes mixed reality devices 
to deliver digital information about both real and virtual 
power systems to the operators, thereby enhancing the 
efficiency of inspections by providing them with more 
information. The holographic projection technology 
enables the display of virtual 3D images of power 
equipment to the operators, allowing them to access 
operation information without needing to wear extended 
reality devices.

Once the operators acquire digital information from 
the meta-power, they must analyze and use the data to 
inform their decisions and subsequent actions. The initial 
three generations restricted the operation solely to the real 
power systems. With the fourth-generation HMI module, 
the operators can have three operation scenarios: Real 
power system operation, virtual power system operation, 
and collaborative virtual-reality operation. The scenario 
of real power system operation involves using wearable 
controllers to conduct remote inspections and repair 
power equipment with the assistance of robots. The 
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scenario of virtual power system operation involves the 
training of the operators with wearable controllers, where 
crews can be trained via controlling digital avatars. This 
scenario can refine the skills of the operators through 
simulation experience. The scenario of collaborative 
operation between virtual and real power systems is 
particularly suitable for emergencies, where the operators 
are confronted with an unfamiliar operation condition 
provided by the meta-power. The proposed operation 
scenario includes three steps: (1) Mapping the current 
condition of real power systems into virtual power 
systems; (2) Allowing the operators to perform various 
experiments within the virtual power system module to 
derive an optimal plan; (3) Implementing the optimal 
operation plan obtained from the virtual power systems to 
the real power systems.

4. APPLICATION SCENARIOS OF META-
POWER

The meta-power scenarios embody the link between the 
three elements in the infrastructure layer, which has been 
shown in Figure 2. The augmented reality scenario of 
the meta-power facilitates a unidirectional information 
transfer from the virtual power system module to the real 
power system module, which can be categorized into data 

augmentation and information augmentation. The daily 
recording involves the information transfer from both 
real and virtual power systems to databases, enabling the 
creation of a comprehensive historical record of events 
that can be accurately reproduced. The scenario of the 
mirror world entails a two-way information exchange 
between real power systems and their virtual counterpart, 
serving various purposes such as operational control, 
information security, health management, and resilience 
restoration. The virtual world operates as a unidirectional 
channel where data from real power systems is 
transmitted to the virtual power systems, which then 
employ the information to perform design and training 
solutions for designers and trainers. Figure 10 shows the 
four major scenarios of the meta-power.

4.1. AUGMENTED REALITY
Augmented reality can be categorized into two types: 
data augmentation and information augmentation. The 
data augmentation is used to generate additional power 
data by simulating multiple scenarios, including normal, 
abnormal, and extreme conditions, using a virtual power 
system module. Data augmentation helps to expand the 
dataset and improve the accuracy and reliability of ML 
models. Information augmentation refers to enhancing 
the information representation related to the current 

Figure 10. Four application scenarios of meta-power: augmented reality, daily recording, mirror world, and virtual world.
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operational conditions of power equipment and grid 
systems to achieve ubiquitous information visualization.

Data augmentation can be effectively implemented 
in real power systems to improve the accuracy and 
reliability of various tasks, such as power generation 
forecasting, load forecasting, and situation awareness 
(SA). The virtual power system module can enhance the 
accuracy of DL models for power generation and load 
forecasting by simulating various operational conditions, 
including power generation and user consumption 
patterns. These simulations increase the data quantity 
and quality, resulting in more accurate predictions. SA 
is a term used to express the capacity to perceive and 
comprehend the current states of real power systems with 
a high level of resolution [146]. This includes the ability 
to perceive, understand, and map the processes of power 
system operation, which can be achieved by a three-
step process. By applying data augmentation, the SA of 
power systems can be improved, enabling them to gain a 
better understanding of how real power systems behave 
when subjected to different operational conditions. 
This is achieved by performing multiple simulations 
and visualizing the results in various ways, which 
allows operators to observe the state transition of real 
power systems in greater detail. To achieve information 
augmentation in the meta-power, it is necessary to utilize 
information processing systems and interactive interfaces, 
such as SCADA systems for supervisory control and data 
acquisition, WAMS systems for wide-area monitoring 
and control, and AMI systems for advanced metering 
infrastructure. These systems work in tandem to enhance 
data processing and communication, enabling more 
comprehensive and accurate decision-making in the meta-
power. 

The conventional interactive interface for power 
systems is a two-dimensional display screen, which 
lacks convenience and immersion as an HMI medium. 
Moreover, it  fails to offer real-time operational 
information on power equipment for inspectors, thus 
limiting their ability to monitor and maintain the power 
systems effectively. The implementation of augmented 
reality devices can enhance power equipment inspection 
by providing inspectors with real-time and accurate 
information, displaying operational data clearly, and 
improving convenience and immersion during the 

inspection process. Chae et al. have created an augmented 
reality-based remote monitoring system for the power 
grid [147]. Augmented reality glasses were integrated with 
a cluster radio system and RTUs in power systems. This 
integration enables inspectors to visualize the operational 
information of power equipment in real-time, as obtained 
from the cluster radio systems and RTUs, through the 
augmented reality glasses. The inspection process was 
recorded on video and subsequently shared with experts 
for analysis.

4.2. DAILY RECORDING
The meta-power involves the systematic collection and 
reproduction of historical data and events from both real 
and virtual power systems, enabling the recording and 
analysis of past power system operations with greater 
accuracy.

In the meta-power, the daily recording is reflected 
in the collection and reproduction of historical data 
and events from real and virtual power systems, which 
facilitates the recording and analysis of past power 
systems. Managing the vast amount of data generated 
by real and virtual power systems is a crucial challenge 
in implementing daily recording, and a practical storage 
and management system must be developed to handle 
this task efficiently. Although abnormal data is more 
valuable in power systems, it is typically less abundant 
than normal operating data due to the usual operation of 
power systems under normal conditions. Therefore, there 
is a greater quantity of normal operating data available 
compared to abnormal data. In power systems, digital 
fault recorders are commonly used to record information 
about equipment failures. However, they do not have an 
automated feature to capture and store the data sequence 
preceding the occurrence of the faults. One potential 
direction for expanding the event or fault library of the 
meta-power in the future is the development of fault 
recorders equipped with an automatic data storage 
function for sequences leading up to a fault occurrence. 
A robust big data management strategy is also crucial for 
effectively storing operating data from real and virtual 
power systems. The meta-power database aims to store 
well-comprehended information rather than raw data. It 
is a more effective solution for daily records to use big 
data management technology to process vast amounts of 
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data into easily understandable information for operators 
before storing it. Several alternative data management 
schemes can be used for the meta-power, including 
Hadoop distributed file systems, layered expansion 
storage mechanisms, micro-storage strategies based on 
edge devices, and data storage technologies based on 
cloud platforms [148,149].

Recording historical data and events in the meta-
power serves the purpose of facilitating the reproduction 
of past events or faults that occurred in the real power 
systems. Virtual power systems in the meta-power can 
access historical data records from the database that 
pertain to a particular event that occurred in the real 
power systems. The aforementioned historical data is 
utilized as an input to simulate an event or fault in the 
virtual power system. This enables operating personnel to 
develop a more comprehensive understanding of the past 
incidents that took place in the real power systems. To 
enhance the awareness of operating personnel regarding 
operational safety, simulations of past incidents, such 
as the Chornobyl nuclear power plant disaster within 
a virtual power system environment, can be highly 
beneficial.

4.3. MIRROR WORLD
The scenario of the mirror world in the meta-power 
depicts the interaction between the real and virtual 
power systems, primarily focusing on the analysis and 
management of the power systems that are currently 
operational. The real power systems utilize sensors 
and communication networks to transmit data to the 
virtual power systems, enabling both systems’ seamless 
integration and operation. The virtual power systems 
operate in a simulated environment using acquired data 
and provide a visual representation of operating results 
to aid operators in making decisions, whether as direct 
controllers or indirectly, to achieve optimal operation of 
the real power systems. The scenario of the mirror world 
has broad applicability in various fields, such as power 
system control, information security, health management, 
and resilient recovery [150].

In the scenario of the mirror world, the real and 
virtual power systems run in parallel. The two power 
systems aid operators in evaluating both the transient 
and steady-state performance of the power systems, 

enabling them to make informed decisions regarding 
optimal control strategies. The energy and distribution 
management systems play crucial roles in maintaining 
a balanced supply-demand by efficiently controlling the 
transmission and distribution of energy. However, the 
existing analysis of supply-demand balance in control 
centers predominantly emphasizes steady-state analysis, 
whereby the strategy for balancing supply and demand is 
determined beforehand, and subsequently, the temperature 
and voltage conditions of the power equipment are 
assessed to establish the stable operating limits of the 
power systems [151]. By leveraging the high fidelity and 
high data rate of the virtual power system, it becomes 
possible to conduct thorough assessments of the supply-
demand balance strategy, allowing for the determination 
of the transient operating boundaries of the power 
system. The virtual power system not only provides real-
time updates on the current operating state of the power 
system but also has the capability to simulate and predict 
future system evolution, thereby enhancing the protection 
of the power system operations. The virtual power 
system enables the detection of abnormal operations in 
the real-time power system through transient and steady-
state assessments, allowing for the prompt switching of 
control strategies to prevent severe damage and provide 
protection.

Information security is crucial to maintaining the 
smooth operation of the meta-power. The vulnerabilities 
present in the communication of the smart grid can 
be categorized into three distinct groups: device 
vulnerabilities, network vulnerabilities, and data 
vulnerabilities. A virtual power system has the capability 
to simulate various attack scenarios on the actual power 
system, allowing for the timely detection of potential 
information leaks, tampering, and intrusions. A. Saad 
et al. leveraged Amazon Web Services to create a 
virtual power system platform capable of analyzing the 
distribution system’s security and thwarting potential 
attacks, including virtual data injection, denial of service, 
and coordinated attacks [152]. In addition to simulating 
attack scenarios, the virtual power system can also 
function as a preventive measure to safeguard the real 
power system against potential threats or vulnerabilities 
by identifying and mitigating them before they manifest 
in the physical system [153]. As an example, physics-
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based virtual power systems can detect and flag data that 
violates physical laws, recognize and label data that has 
been injected by attackers as anomalous, and enhance the 
security of the real power system operation by preventing 
the integration of potentially harmful data into the 
systems.

In real power systems, degradation is an inevitable 
occurrence that  can cause a  decl ine  in  system 
performance and an increase in operating costs [154]. 
Virtual power systems have the capability to monitor the 
operational condition of power equipment and accurately 
predict its remaining useful life, thereby allowing for a 
shift in maintenance strategies from scheduled preventive 
maintenance to predictive maintenance. This results 
in more efficient power equipment maintenance and 
helps optimize equipment uptime while minimizing 
downtime and maintenance costs. The process of health 
management utilizing the scenario of the mirror world 
can be broken down into four steps: (1) The process 
involves creating virtual models of real power equipment 
with a high level of accuracy by incorporating detailed 
information on its geometric structure, materials used, 
and operational mechanisms; (2) The identification of 
anomalies in real power equipment, or design defects 
in virtual power equipment, can be achieved through 
the analysis of interactions between the real and virtual 
power equipment; (3) By integrating data from both real 
and virtual power equipment, it becomes possible to 
analyze the health status and remaining lifetime of real 
power equipment; (4) Based on the results of the health 
analysis, predictive maintenance can be executed and 
necessary parts can be proactively purchased to minimize 
downtime [155]. The scenario of the mirror world for 
health management has been implemented in various 
applications, including power electronic converters, 
battery packs, offshore wind turbines, and large 
generators [156,157].

To address the potential impact of low-probability, 
high-impact events such as earthquakes and tornadoes, 
the power systems have adopted the concept of resilience. 
Resilience refers to power systems’ ability to anticipate, 
withstand, and recover from external shocks, returning 
to their pre-shock state in a timely manner and better 
preparing for future disaster events. The implementation 
of the mirror world can enhance the resilience of the 

power systems by minimizing the degree, speed, and 
duration of degradation caused by external shocks, aiding 
operators in comprehending various types of attacks, 
creating mitigation strategies that can be applied before, 
during, and after attacks, and achieving resilience of the 
power systems from diverse levels of system anomalies [152]. 
Nowocin [158] utilized a virtual power system to evaluate the 
resilience performance of microgrid controllers.

4.4. VIRTUAL WORLD
The scenario of the virtual world in the meta-power 
involves a unidirectional flow of information from the 
real power systems to the virtual power systems. The 
main focus of this scenario is to analyze future power 
systems at a systemic level, and it offers a platform for 
users to access virtual power plants from any location 
and at any time, transcending the constraints of time and 
space. The virtual power systems, modeled after real 
power systems, can offer a low-risk and cost-effective 
simulation platform for designers, maintenance crews, 
and trainees. The scenario of the virtual world in the 
meta-power encompasses power system design, future 
energy planning, and maintenance training.

By facilitating the analysis of efficiency, reliability, 
and safety of equipment and systems, the scenario of 
the virtual world in the meta-power can enhance the 
design performance of modern power systems at both 
equipment and system levels while also providing a 
means to optimize the design of real power systems. At 
the equipment level, the scenario of the virtual world can 
aid designers in simulating operating conditions under 
different failure modes during the design phase. This 
approach enables the optimization of power equipment 
design and reduces the failure rate of equipment put into 
operation in the future. The virtual grid model can be 
designed and subsequently simulated at the system level 
to evaluate the power systems’ operating conditions under 
various working conditions. This process can identify and 
eliminate potential operating risks [159].

The generation capacity and technology of real 
power systems are continuously evolving due to the 
rising demand for electricity and the development of 
new energy strategies. The development of energy 
strategies has always been a crucial topic in both the 
academic and industrial sectors. The development of 
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energy strategies is a strategic decision that is closely 
tied to the economic benefits of power companies. 
Thus, decisions related to the development of energy 
strategies must be made with a focus on accurate long-
term forecasting of demand growth, technology trends, 
and regulatory rules. The virtual power systems serve as 
effective testing platforms for predicting the responses 
of the power systems under varying time frames and 
operating scenarios. Through analysis of the short-term 
and long-term impacts of various incentive mechanisms, 
demand response strategies, electricity price schemes, 
renewable energy access schemes, and electric vehicle 
penetration strategies, the virtual power systems facilitate 
the simulation and evaluation of future energy strategies.

The scenario of the virtual world in the meta-power 
offers an inexpensive and safe training and maintenance 
practice environment for interns and maintenance crews. 
Training interns is crucial to enhancing their practical 
skills and plays a vital role in ensuring the safety of the 
power systems [160]. By creating a virtual power plant 
environment using VR devices, interns can experience a 
greater sense of immersion and practical operation [161].

5. CHALLENGES AND PERSPECTIVES OF
META-POWER

The meta-power aims to enhance the flexibility, 
reliability, and economy of real power systems by 
leveraging four primary modules: virtual power systems, 
virtual-reality interaction, intelligent analysis, and HMI. 
The primary challenges that the meta-power encounters 
pertain to virtual power system modeling, virtual power 
system updating, intelligent inference systems, extended 
reality, computing power, security, and privacy.

5.1. VIRTUAL POWER SYSTEM MODELING
Acquiring relevant and accurate data from various 
sources, such as sensors, devices, and systems, can 
be complex. Integrating data from disparate sources 
and formats into a coherent and consistent model is a 
significant challenge. Data quality, consistency, and 
compatibility issues need to be addressed to ensure the 
reliability and effectiveness of virtual power systems. 
Developing appropriate models to simulate the behavior 
of real power systems can be challenging. Calibration 

of the model to match real-world observations and 
performance requires careful validation.

5.2. VIRTUAL POWER SYSTEM UPDATING
Updating the virtual power systems represents two 
significant challenges. The update of virtual power 
systems can be divided into two aspects: convergence 
rate and update rate. In the future, guaranteeing the 
synchronization accuracy between the real and virtual 
power systems represents a challenging obstacle that 
must be overcome. Moreover, determining the optimal 
update rate of the virtual power system is another issue 
that requires careful consideration. While a higher 
update rate allows for more precise and timely analysis 
of the power system, it also places a substantial load on 
communication networks and computing resources. The 
article puts forth two potential solutions to the update 
challenges of the virtual power systems: (1) creating a 
hardware-in-the-loop test bed to validate the accuracy 
of the update algorithm; and (2) forming an expert 
committee to establish standards for the virtual power 
systems. Furthermore, as the fundamental component 
of the meta-power, the virtual power systems are also 
vulnerable to malicious attacks, highlighting the need for 
encryption technology that can safeguard both the real 
and virtual power systems, representing a future research 
direction.

5.3. INTELLIGENT INFERENCE SYSTEMS
Although deep learning-based inference systems have 
great predictive performance, the inference systems not 
only need accurate inference results but also need to bring 
interpretability to the industry. Recently, researchers 
have recognized the problem of weak interpretability of 
deep learning models and developed two major ways 
to interpret deep learning models: Rule-based surrogate 
models with decision tree retraining, and physics-
informed deep learning that can train the deep learning 
model guided by physical laws. A decision tree-based 
surrogate model trains a decision tree that can explain 
the features learned by the deep learning model, while 
physics-informed deep learning mainly utilizes the 
physical laws to guide the training of deep learning, and 
thus the trained model conforms to the basic physical law 
and has a certain physical interpretation.
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5.4. EXTENDED REALITY
The main research challenge for the HMI module in 
the meta-power lies in the development and integration 
of extended reality devices and holographic projection 
devices. The main issue with virtual reality devices 
is  communication,  which involves transmitt ing 
information from the real power systems to the virtual 
power systems and user-operated digital human 
operation instructions. This challenge becomes more 
significant when multiple users are involved, as it can 
lead to communication delays. The main challenges 
of augmented reality technology in the HMI module 
in the meta-power are tracking accuracy and effective 
field of view, which can impact the convenience and 
immersion of the operators during the inspection process. 
MR devices, being an integration of virtual reality and 
augmented reality devices, pose challenges that need to 
be overcome for their further development, including 
communication, tracking accuracy, and effective field of 
view. Currently, holographic projection can integrate real 
and virtual environments of power stations and enable 
the information visualization of power systems in any 
location. However, holographic projection faces several 
challenges, including low resolution, small display 
size, poor mobility, and high costs. Overcoming these 
weaknesses would provide holographic projection with 
an opportunity for widespread application in real power 
systems and further promote the development of meta-
power.

5.5. COMPUTING POWER
Computing power plays a fundamental role in the 
development of meta-power, as it is essential for the 
proper functioning of various software and hardware 
components within the meta-power architecture. In the 
increasing digitalization, computing power serves as an 
extension of human capabilities, facilitating the digital 
transformation and advancement of power systems. 
According to predictions, achieving the metaverse would 
necessitate computing power at least 106 times greater 
than the current capacity.

5.6. SECURITY AND PRIVACY
With the advent of the meta-power, the function of 

linking reality and virtuality in the meta-power will lead 
to a substantial increase in the online time of consumers. 
To gain a deeper understanding of consumers’ thinking 
and behavior, the meta-power developer will inevitably 
collect more personal privacy information about users 
and even continuously monitor users’ behavior patterns. 
In order to prevent the theft of information and misuse of 
data, strict supervision of data must run through the entire 
life cycle of data, including storage and management. 
Moreover, dealing with meta-power big data requires an 
efficient and lightweight security and privacy scheme.

6. CONCLUSION

Meta-power is a new generation of digitalized power 
systems that integrates multiple technologies, offering 
strong interactivity and hyper-spatiotemporality beyond 
the original characteristics of smart grids. The meta-
power necessitates the support of diverse advanced 
technologies, particularly advanced HMI and DT 
technologies. Advanced HMI technology based on 
extended reality devices and holographic projection can 
contribute to achieving strong interactivity in the meta-
power, improve the ubiquitous information visualization 
of power systems, and ensure the convenience and 
immersion of the operators. DT technology can replicate 
past power systems, perform real-time analysis and 
control of current power systems, and predict and 
evaluate future power systems, thereby achieving hyper-
spatiotemporal operation of meta-power. In the future, 
the meta-power is expected to have more applications 
to enhance the operational flexibility of power systems 
with a high power electronics ratio, high renewable 
energy ratio, and high electric vehicle ratio. This will 
accelerate the realization of the goal of carbon neutrality 
by improving the efficiency of energy usage and reducing 
greenhouse gas emissions.
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