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一、引言

微分中值定理最初的朦胧认识源于几何学和物理学。在古希

腊时代，著名数学家阿基米德总结出一个结论：任意抛物线形成

的弓形不但面积可以求解，而且过弓形顶点的切线一定平行于抛

物线的底边 [1][2]。随后，意大利数学家卡瓦列里在《不可分量几何

学》一书中也得出一个观点：曲线段上至少有一个点的切线平行

于曲线的某条弦 [3]。物理学上，微分中值定理更加直观，凭借感

觉就可以得知，物体运动的瞬时速度一定会在某个时刻与平均速

度一样。因此严格的证明上述特定现象变得十分迫切。

微分中值定理的严格理论研究早在1677年就开始了 [4]。法国

数学家罗尔于1691年在《方程的解法》一文中率先提出了：多项

式形式的“罗尔定理”[5]。随后，法国数学家拉格朗日进一步拓

展了该定理，于1797年在《解析函数论》中证明了“拉格朗日定

理”[6]。法国数学家柯（(Cauch）)对微分中值定理进行系统研究，
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并发现了最后一个微分中值定理。他发现了微分中值定理在极

限、求解方程中的重要作用，使其成为一元微分学的核心理论。

在他的著作《无穷小计算教程概论》中，柯西不但严格地证明了

“拉格朗日定理”，而且在他的另外一部著作《微分计算教程》

中将其推广为更加一般化的微分中值定理 — “柯西微分中值定

理”[7]。现代高等数学关于微分中值定理部分的教学以罗尔定理，

拉格朗日中值定理和柯西中值定理为核心 [8]。这三个定理是整个

一元微分学的理论基础，在高等数学课程中的地位十分重要，也

是高中知识与大学知识联系的一个桥梁。

微分中值定理作用不同于微积分计算，其侧重于定性的分析

函数性态和函数性质，从理论上分析和证明导函数的局部性质和

函数本身在区间上的整体性质之间的关系 [9]。其核心思想是：揭

示在某定义区间内函数整体性质和该区间中某一点导函数值（包

括函数的一阶导函数和二阶导函数等）之间的关系。微分中值定

理除了理论性证明以外，还能够应用导数定性的分析和判断相关
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函数的单调性、极值、凹凸性和拐点等重要函数状态。因此，微

分中值定理在整个高等数学中理论部分有着重要作用，它架起了

利用微分研究函数的桥梁。 

微分中值定理是一系列中值定理的统称，主要包括罗尔中值

定理、拉格朗日中值定理、柯西中值定理。这三个微分中值定理之

间存在内在联系，拉格朗日中值定理与柯西中值定理都是罗尔中值

定理的推广，其中拉格朗日中值定理是微分中值定理的核心，证明

则是通过构造合适的辅助函数，然后利用罗尔定理完成证明 [10]。

这种辅助函数的构造，是证明微分中值定理的难点，根据相关文

献 [11][12]，常用的辅助函数构造方法有：几何法、观察法、常数 k值

法、凑原函数法、微分方程法、积分法、行列式法、变上限积分

法、指数因子法等。这些方法往往需要根据命题的特征，经过推敲

与不断修正而构造出来的，似乎没有统一的规律，从而使得辅助函

数的构造显得困难甚至神奇。因此，在具体题型上采用哪种方式更

加合适，需要大量的练习积累经验以及正确的数学思维加以引导。

本文通过总结上述方法，从不同角度归纳、推导了几类中值证明题

中辅助函数构造的一般方法。此外，结合若干例题用于说明微分中

值定理在导数极限、导数估值、方程根（零点）的存在性、不等式

的证明，以及计算函数极限等方面解题中的一些应用。

二、构造辅助函数的基础理论

由于微分中值定理部分内容理论性强，抽象程度高，且题型

都是以证明题为主。因此课堂上授课难度加大，且容易照本宣科

的进行教学。正如胡国专在《数学方法论与大学数学教学研究》

一书中明确指出：教师不仅要教会学生具体的基本数学知识及逻

辑推理能力，而且还要教会学生如何发现数学、创造数学及应用

数学 [13]。这就要求我们教师需通过自己的教学活动让学生看到

“活生生”的数学研究工作，而不是死的数学知识，并且帮助学生

真正理解、领会有关数学内容及其内在的思想方法。更加复杂的

是在微分中值定理相关命题的证明过程中已知条件出现的形式并

不能直接推导出所要的结果。因此，生硬的知识灌输会导致学生

的学习兴趣下降，难于理解和应用。 

一般而言，微分中值定理的命题是不能利用三个定理的结论直

接得出，因此需要借助一个合适的辅助函数来实现这类数学问题的

等价转换，构建条件和结论之间的桥梁 [14][15]。但是，不同于以往的

证明题和计算题，辅助函数的直接引入是十分晦涩和难于理解的，

从而使学生面对辅助函数的由来会茫然无措，学生自然要问：“为

什么要构造辅助函数？这个辅助函数是怎么构造出来的？”。针对

上述问题，虽然我们不知道数学家当时的想法，但作为一个数学教

师有必要引导学生去思考知识的产生过程及解决问题的方法。另一

方面，如何自然的在微分中值定理证明题中构造辅助函数一直是教

学中的一个难点。为了说明上述问题，这里首先从拉格朗日中值定

理的证明过程来展示辅助函数的构造过程，然后通过例题逐一介绍

不同类型的证明命题利用哪种方式来构建具体的辅助函数。

拉 格 朗 日 中 值 定 理 的 证 明 主 要 是 采 用 构 造 辅 助 函 数

( ) ( )( ) ( ) f b f aF x f x x
b a
−

= −
−

，然后利用罗尔中值定理完成证明的，

下面给出具体条件和结论。

罗尔中值定理：设函数 ( )f x 在 [ , ]a b 上连续，在 ( , )a b 内可

导， 且 ( ) ( )f a f b= ， 则 在 ( , )a b 内 至 少 存 在 一 点 ξ ，

使 ( ) 0f ′ =ξ 。

拉格朗日中值定理：设函数 ( )f x  在 [ , ]a b 上连续，在 ( , )a b

内可导，则在 ( , )a b  内至少存在一点 ξ  ，使得

	 ( ) ( )( ) f b f af
b a
−′ =
−

ξ ，� (1)

在罗尔中值定理成立的前提下，我们来分析拉格朗日中值定

理的证明思路。从上述定理的条件和结论易知，在拉格朗日中值

定理中当 ( ) ( )f a f b=  时就是罗尔中值定理。因而罗尔中值定理

是拉格朗日中值定理的特殊情况。我们自然会想到能否运用罗尔

中值定理来证明拉格朗日中值定理？观察罗尔中值定理的结论，

左端是一个函数在某点处的导数值，右端为零。于是，我们来考

察（1）式，显然它可以改写为：

	 ( ) ( )( ) 0f b f af
b a
−′ − =
−

ξ ，� (2)

对比罗尔中值定理，自然我们会去思考（2）式左端是哪个函

数在点 ξ 处的导数值？不妨设该函数为 ( )F x ，这也是我们为什么

要构造辅助函数，即
( ) ( )( ) ( )x

f b f aF x f
b a=
−′ ′= −
−ξ ξ 。

因此，只要 ( )F x 满足罗尔中值定理的条件定理即可得证。于

是问题转化为如何确定函数 ( )F x ，也即辅助函数 ( )F x  是怎么构

造出来的。

通过分析，易知， ( )f ′ ξ  是函数 ( )f x 在点 ξ 处的导数值，而

常数
( ) ( )f b f a

b a
−
−

是函数
( ) ( )f b f a x

b a
−
−

点 ξ 处的导数值。于是，辅

助函数可设为
( ) ( )( ) ( ) f b f aF x f x x

b a
−

= −
−

（也可适当加常数）。

通过上述分析过程，易发现，对于要证明含有 ( )f ′ ξ 的恒等

式，一般可以构造辅助函数，采用罗尔中值定理证明。而构造辅

助函数是解决这类问题的关键。下一章节将具体介绍三种构造辅

助函数的一般方法。

三、构造辅助函数的一般方法

总的来说，构造辅助函数方法很多，需要解答者具备较高的

技巧性和灵活性。具体选择哪个方式，首先要分析命题的条件和

结论，从而有效判断所要应用的定理，然后将需要证明的等式或

者不等式进行恒等变形，变形后的式子一般需要接近构造的辅助

函数被应用定理后的结果。因此，恒等变形以后的形态是选择哪

种方式构造辅助函数的主要依据。下面我们通过不同实例来说明

构造辅助函数的常用方法。 

（一）求原函数法（不定积分法）

例1 设 函 数 ( )f x ， ( )g x  在 [ , ]a b 上 连 续， 在 ( , )a b 内 可 

导， 且 ( ) 0g x′ ≠ ， 则 在 ( , )a b 内 至 少 存 在 一 点 ξ ， 使

( ) ( ) ( )
( ) ( ) ( )

f a f f
g g b g

′−
=

′−
ξ ξ

ξ ξ
成立。

解： 要 证 的 等 式 可 化 为
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，即 [ ( ) ( ) ( ) ( ) ( ) ( )] 0xf a g x f x g x g b f x =′− + =ξ ，于是构

造辅助函数 ( ) ( ) ( ) ( ) ( ) ( ) ( )F x f a g x f x g x g b f x= − + ，易知， ( )F x  

满足罗尔定理的条件，得证。

例2 设 函 数 ( )f x ， ( )g x 在 [ , ]a b 上 存 在 二 阶 导 数， 且

( ) 0g x′′ ≠ ， ( ) ( ) 0f a f b= = ， ( ) ( ) 0g a g b= =  ，试证明在开区间

( , )a b 内至少存在一点 ξ ，使
( ) ( )
( ) ( )

f f
g g

′′
=

′′
ξ ξ
ξ ξ

成立。

解：将结论中的 ξ 换成 x ，得 ( ) ( ) ( ) ( ) 0f x g x g x f x′′ ′′− = ，等

式两边积分得

,故可构造辅助函数为 ( ) ( ) ( ) ( ) ( )F x f x g x g x f x′ ′= − ，易知，

( )F x  满足罗尔定理的条件，得证。

例3 设函数 ( )f x ， ( )g x 在 [ , ]a b 上连续，在 ( , )a b 内可导，且

( ) 0g x′ ≠ ， ( ) ( ) ( ) ( )f a g b g a f b= ，试证明在开区间 ( , )a b 内至少存

在一点 ξ ，使 ( ) ( ) ( ) ( )f g f g′ ′=ξ ξ ξ ξ 成立。

解：将结论中的 ξ 换成 x ，等式可化为
( ) ( ) 0
( ) ( )

f x g x
f x g x
′ ′

− = ，等

式两边积分得
( ) ( ) ( )[ ] 0
( ) ( ) ( )

f x g x f xdx C
f x g x g x
′ ′

− = + =∫ ,故可构造辅助函

数为
( )( )
( )

f xF x
g x

= ，易知， ( )F x  满足罗尔定理的条件，得证。

（二）柯西中值定理法

如果需要证明的微分中值定理的等式中可化为

形式，则可以采用柯西中值定理进行证明。这类

题型的特点是命题表达式中含有两个常数 ,a b ，且表达式中常数 a

与常数 b 可分离。

例4 设函数 ( )f x 在 [ , ]a b 上连续，在 ( , )a b 内可导，试证：在

( , )a b 内至少存在一点 ξ ，使
( ) ( ) ( ) ( )af b bf a f f

a b
− ′= −
−

ξ ξ ξ 。

解：要证的等式可化为

( ) ( )

( ) ( )1 1

f b f a
b a f f

b a

−
′= −

−
ξ ξ ξ ，于是构

造辅助函数
( )( ) f xG x
x

= ，
1( )g x
x

= ，得
( ) ( ) ( )
( )

G x f x xf x
g x
′

′= −
′

，又

函数 ( )G x 、 ( )g x 在 [ , ]a b 上满足柯西中值定理条件，即得证。

例5 设 0 a b< < ，函数 ( )f x 在 [ , ]a b 上连续，在 ( , )a b 内可

导，试证明在 ( , )a b 内至少存在一点 ξ ，使得：  

解：可将等式化为
2 2

( ) ( )
2 ( ) ( ) .1 1

f b f a
f fb a

b a

− ′−
=

−

ξ ξ ξ
ξ

可令

求 得
( ) 2 ( ) ( ) .
( )

G x f x xf x
g x x
′ ′−

=
′

由 柯 西 中 值 定 理 

得证。

例6 设函数 ( )f x 在 [0,1] 上连续，在 (0,1) 内可导，试证：至

少存在一点 (0,1)∈ξ ，使得： ( ) 2 [ (1) (0)].f f f′ = −ξ ξ   

解： 可 将 等 式 化 为 2 2
(1) (0) ( ) .
1 0 2

f f f ′−
=

−
ξ
ξ

可 令

求得
( ) ( ) .
( ) 2

G x f x
g x x
′ ′

=
′

由柯西中值定理得证。

（三）微分方程法

如果微分中值定理的命题式可化为 ( ) ( ) ( ) ( )f f g h′ + =ξ ξ ξ ξ 形

式，那么可通过解一阶线性微分方程 ( ) ( ) ( ) ( )f f g h′ + =ξ ξ ξ ξ 得通

解
( ) ( )( ) ( )g d g df e h e d C∫ ∫− =∫
ξ ξ ξ ξ

ξ ξ ξ 的方法来证明。由此该类型题

目的解题思路一般如下：首先，构造辅助函数

，然后利用罗尔定理即可。下面我们通过几个例题

来详细说明这种方法。

例7 设 0 a b< < ，函数 ( )f x 在 [ , ]a b 上连续，在 ( , )a b 内可

导， 且 ( ) 0f a = ， 证 明 在 ( , )a b 内 至 少 存 在 一 点 ξ ， 使

( ) ( )bf f
a
− ′=
ξξ ξ 成立。

解：要证的等式可化为
( )( ) 0aff

b
′ + =

−
ξξ

ξ
，所以可构造辅助函

数为 ( ) ( ) ( ) ( )
a dx ax bF x f x e x b f x−∫= = − 。由题设知 ( )F x 满足罗尔定

理的条件，即可得证。

例8 设 函 数 ( )f x 在 [ , ]a b 上 连 续， 在 ( , )a b 内 可 导， 若

( ) ( )f a f b= ， 证 明 在 (a,b)内 至 少 存 在 一 点 ξ ， 使

成立。

解：要证的等式可化为 2 2( ) 3 ( ) 3 ( )f f f a′ − = −ξ ξ ξ ξ ，所以可 

构造辅助函数为

。由题设知 ( )F x 满足罗尔定理的条件，即可得证。

例9 已知 ( )f x 连续，且 ( ) ( ) 0f a f b= = ，求证在 ( , )a b 上有

一点 ξ 使得
( ) ( )
2

f f
′

=
−
ξ ξ
ξ

。[10]

解：先将待证式子进行整理为 ( ) 2 ( ) 0f f′ + =ξ ξ ξ ，那么该式

可以变为一个很简单的微分方程：

	 2 0dy xy
dx

+ = ，� (3)

求解该方程：

	 21 2 lndy xdx y x C
y

= − ⇒ = − + ，� (4)

令待定常数 0C = ，式（4）可化简为 2ln y x= − ，即
2xy e−=

或者
2

1 0xye − = 。因此， 忽略常数项后， 可设辅助函数为：
2

( ) ( ) xF x f x e=  。

又因为 ( ) ( ) 0F a F b= = ，那么由罗尔定理就有

，也即 ( ) 2 ( ) 0f f′ + =ξ ξ ξ ，整理则题目得证。

四、微分中值定理的应用

微分中值定理相比微分计算部分的理论性更强，也是微分学

的理论基础部分。对于初学者而言，该部分通常以证明题为主，

但是实际上微分学的很多重要应用都是可以利用微分中值定理进

行求解的。由于常用的高等数学或者数学分析书籍在该部分侧重

于理论证明，因此下面将用相应例题来展示微分中值定理在下列

问题上的应用，包括：可导函数在某区间内根的存在性与唯一性

问题；可导函数不等式的证明与极限求解。

（一）方程根的存在性

例10 证明方程 4 3 25 4 3ax bx cx a b c+ + = + + 在（0,1）内至少



2024.5 | 147

有一个实根，其中 a, b, c均为常数。

解： 分 析： 设 4 3 2( ) 5 4 3 ( )f x ax bx cx a b c= + + − + + ， 则 令

5 4 3

0
( ) ( ) ( )

x
F x f t dt ax bx cx a b c x= = + + − + +∫ ， 原 问 题 等 价 于 求

( )f x 的一个原函数   ( )F x 的导数 ( )F x′ 在 (0,1) 内至少有一个零

点。 又 因 为 ( )F x 在 [0,1] 上 连 续， 在（0, 1） 内 可 导， 且

(0) (1) 0F F= = 。所以函数 ( )F x  满足罗尔中值定理，至少存在一

点 (0,1)∈ξ ，使

 4 3 2( ) 5 4 3 ( ) 0F a b c a b c′ = + + − + + =ξ ξ ξ ξ  ，             (5)

即 (0,1)∈ξ 是方程 4 3 25 4 3ax bx cx a b c+ + = + + 的根。

（二）求极限

一般而言，函数的极限求解通常可以用洛必达定理，但是这

种常规的计算方法对于某些题目而言会造成解题过程中出现大量

计算或者造成解题过程繁琐。这种计算量较大的求解过程往往会

导致解题错误。然而，如果转变思路采用微分中值定理的话，可

以为这类题目提供一种简单有效的方法。与证明题类似，利用微

分中值定理来求极限，关键点仍然在辅助函数的构造，通过辅助

函数结合相应的微分中值定理就可以求出极限。

例11 求 
1 12

1lim
2

n n
n

n a a +

→∞

 
− 

 
，其中 0a > 。

解：分析：由于题目中有指数项 
1
na  和

1
1na + ，因此尝试构造

辅助函数 ( ) xf x a= ，可知函数 ( )f x 在闭区间
1 1[ , ]

1n n+
上连续，在

开区间
1 1,

1n n
 
 + 

上可导，满足拉格朗日中值定理条件。

根据题意，由拉格朗日中值定理，有

	 ，� (6)

其中，
1 1,

1n n
 ∈ + 

ξ  。

（三）不等式证明

不等式的证明除了常用不等式以外，对于连续函数通常利用

介值定理，最值定理来证明；而可导的函数可以采用单调性，凹

凸性来证明。但是有些类型函数如果采用微分中值定理则可以大

大简化证明过程。一般过程是根据不等式两边的式子形式选取一

个合适的辅助函数，再利用微分中值定理求出一个等式，最后利

用这个自变量的不同取值范围进行讨论，从而得出相应的不等

式。这里通过几个例题来详细说明相关步骤。

例12 求证当 0x > 时， ( )2 21 ln 1 1x x x x+ + + > +  。[16]

解：设辅助函数 2( ) ln( 1 )f x t t= + + ，那么在区间 [0, ]x 上对

( )f t 使用拉格朗日中值定理，可得 2

2
ln( 1 )

1
xx x+ + =
+ξ

，其中

(0, )x∈ξ 。 因 此 有
2 2

2

2

11 ln( 1 )
1

xx x x + +
+ + + =

+

ξ

ξ
， 又 因 为

(0, )x∈ξ ，所以
2 2 2

2

2 2

1 1 1
1 1

x x x
x

+ + +
> = +

+ +

ξ

ξ
，取 ξ 的上限，即

x = ξ ，可得 2 21 ln( 1 ) 1x x x x+ + + > + .

例13求证当 0x >  时，
2 2

ln(1 )
2 2(1 )
x xx x x

x
− < + < −

+
。[17]

解：设辅助函数 ( ) ln(1 )f t t t= + − ， 2( )F t t= ，在区间 [0, ]x 上

对 函 数 ( )f t 与 ( )F t 满 足 柯 西 微 分 中 值 定 理 条 件， 有：

( ) ( ) (0)
( ) ( ) (0)

f f x f
F F x F
′ −

=
′ −
ξ
ξ

，其中 (0, )x∈ξ ，那么： 2
ln(1 ) 1

2(1 )
x x

x
+ −

= −
+ξ

，

又 因 为 (0, )x∈ξ ， 则
1 1 1
2 2(1 ) 2(1 )x

− < − < −
+ +ξ

， 所 以

， 化 简 后 可 得：

，原命题得证。

五、结论

微分中值定理是微分学的重要组成部分，同时也是高等数学的

学习重点与难点。一般而言，微分中值定理部分的课程内容是比较

晦涩的。特别是微分中值定理中的证明题，由于思路灵活，方法多

样，经常造成学生没有解题思路。本文重点研究了微分中值定理中

常用的证明方法。通常，微分中值定理的证明过程通常需要构造辅

助函数进行，因此这里详细讨论了几种典型的辅助方程构造方法，

并通过相关例子进行具体说明。最后，通过不同类型的例题介绍了

微分中值定理在方程根的定性分析、极限求解和不等式证明中的应

用，从相关例子中我们可以看出，微分方程的应用往往也离不开辅

助函数的构造，因此，辅助函数的构造技巧值的研究和探讨的。
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